High-spatial resolution UAV multispectral data complementing satellite imagery to characterize a chinstrap penguin colony ecosystem on deception island (Antarctica)
Remote sensing has evolved as an alternative to traditional techniques in the spatio-temporal monitoring of the Antarctic ecosystem, especially with the rapid expansion of the use of Unmanned Aerial Vehicles (UAVs), providing a centimeter-scale spatial resolution. In this study, the potential of a h...
Published in: | GIScience & Remote Sensing |
---|---|
Main Authors: | , , , |
Other Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Taylor & Francis
2022
|
Subjects: | |
Online Access: | http://hdl.handle.net/10261/285342 https://doi.org/10.1080/15481603.2022.2101702 https://doi.org/10.13039/501100011033 https://doi.org/10.13039/501100000780 https://doi.org/10.13039/501100004837 |
id |
ftcsic:oai:digital.csic.es:10261/285342 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Digital.CSIC (Spanish National Research Council) |
op_collection_id |
ftcsic |
language |
English |
topic |
Micasense UAV Sentinel-2 Landsat 8 Penguin colony Remote sensing |
spellingShingle |
Micasense UAV Sentinel-2 Landsat 8 Penguin colony Remote sensing Román, Alejandro Navarro, Gabriel Caballero, Isabel Tovar-Sánchez, Antonio High-spatial resolution UAV multispectral data complementing satellite imagery to characterize a chinstrap penguin colony ecosystem on deception island (Antarctica) |
topic_facet |
Micasense UAV Sentinel-2 Landsat 8 Penguin colony Remote sensing |
description |
Remote sensing has evolved as an alternative to traditional techniques in the spatio-temporal monitoring of the Antarctic ecosystem, especially with the rapid expansion of the use of Unmanned Aerial Vehicles (UAVs), providing a centimeter-scale spatial resolution. In this study, the potential of a high-spatial resolution multispectral sensor embedded in a UAV is compared to medium resolution satellite remote sensing (Sentinel-2 and Landsat 8) to monitor the characteristics of the Vapor Col Chinstrap penguin (Pygoscelis antarcticus) colony ecosystem (Deception Island, South Shetlands Islands, Antarctica). Our main objective is to generate precise thematic maps of the typical ecosystem of penguin colonies derived from the supervised analysis of the spectral information obtained with these remote sensors. For this, two parametric classification algorithms (Maximum Likelihood, MLC, and Spectral Angle, SAC) and two non-parametric machine learning classifiers (Support Vector Machine, SVM, and Random Forest, RFC) are tested with UAV imagery, obtaining the best results with the SVM classifier (93.19% OA). Our study shows that the use of UAV outperforms satellite imagery (87.26% OA with Sentinel-2 Level 2 (S2L2) and 70.77% OA with Landsat 8 Level 2 (L8L2) in SVM classification) in the characterization of the substrate due to a higher spatial resolution, although differences between UAV and S2L2 are minimal. Thus, both sensors used in tandem could provide a broader and more precise view of how the area covered by the different elements of these ecosystems can change over time in a global climate change scenario. In addition, this study represents a precise UAV monitoring that takes place in this Chinstrap penguin colony, estimating a total coverage of approximately 20,000 m2 of guano areas in the study period. This research was funded by grants/projects RTI2018-098048-B-100 (PiMetAn), EQC2018-004275-P, EQC2019-005721, RTI2018-098784-J-I00 and IJC2019-039382-I funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way ... |
author2 |
Ministerio de Ciencia e Innovación (España) Agencia Estatal de Investigación (España) European Commission Ministerio de Ciencia, Innovación y Universidades (España) |
format |
Article in Journal/Newspaper |
author |
Román, Alejandro Navarro, Gabriel Caballero, Isabel Tovar-Sánchez, Antonio |
author_facet |
Román, Alejandro Navarro, Gabriel Caballero, Isabel Tovar-Sánchez, Antonio |
author_sort |
Román, Alejandro |
title |
High-spatial resolution UAV multispectral data complementing satellite imagery to characterize a chinstrap penguin colony ecosystem on deception island (Antarctica) |
title_short |
High-spatial resolution UAV multispectral data complementing satellite imagery to characterize a chinstrap penguin colony ecosystem on deception island (Antarctica) |
title_full |
High-spatial resolution UAV multispectral data complementing satellite imagery to characterize a chinstrap penguin colony ecosystem on deception island (Antarctica) |
title_fullStr |
High-spatial resolution UAV multispectral data complementing satellite imagery to characterize a chinstrap penguin colony ecosystem on deception island (Antarctica) |
title_full_unstemmed |
High-spatial resolution UAV multispectral data complementing satellite imagery to characterize a chinstrap penguin colony ecosystem on deception island (Antarctica) |
title_sort |
high-spatial resolution uav multispectral data complementing satellite imagery to characterize a chinstrap penguin colony ecosystem on deception island (antarctica) |
publisher |
Taylor & Francis |
publishDate |
2022 |
url |
http://hdl.handle.net/10261/285342 https://doi.org/10.1080/15481603.2022.2101702 https://doi.org/10.13039/501100011033 https://doi.org/10.13039/501100000780 https://doi.org/10.13039/501100004837 |
long_lat |
ENVELOPE(-60.633,-60.633,-62.950,-62.950) ENVELOPE(141.604,141.604,-66.775,-66.775) |
geographic |
Antarctic Deception Island Guano The Antarctic |
geographic_facet |
Antarctic Deception Island Guano The Antarctic |
genre |
Antarc* Antarctic Antarctica antarcticus Chinstrap penguin Deception Island |
genre_facet |
Antarc* Antarctic Antarctica antarcticus Chinstrap penguin Deception Island |
op_relation |
#PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098048-B-I00/ES/EL PAPEL DE LOS PINGUINOS EN LOS CICLOS BIOGEOQUIMICOS DE METALES TRAZA EN EL OCEANO AUSTRAL/ info:eu-repo/grantAgreement/MICINN//EQC2018-004275-P info:eu-repo/grantAgreement/MICINN//EQC2019-005721 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098784-J-I00/ES/DESARROLLO DE ALGORITMOS DE BATIMETRIA Y CALIDAD DE AGUA MEDIANTE LOS SATELITES DE ALTA RESOLUCION ESPACIAL SENTINEL-2A%2FB PARA EL AVANCE DE APLICACIONES COSTERAS/ info:eu-repo/grantAgreement/MICINN//IJC2019-039382-I https://doi.org/10.1080/15481603.2022.2101702 Sí GIScience and Remote Sensing 59(1): 1159-1176 (2022) 1548-1603 http://hdl.handle.net/10261/285342 doi:10.1080/15481603.2022.2101702 1943-7226 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100004837 |
op_rights |
none |
op_doi |
https://doi.org/10.1080/15481603.2022.210170210.13039/50110001103310.13039/50110000078010.13039/501100004837 |
container_title |
GIScience & Remote Sensing |
container_volume |
59 |
container_issue |
1 |
container_start_page |
1159 |
op_container_end_page |
1176 |
_version_ |
1790594167354687488 |
spelling |
ftcsic:oai:digital.csic.es:10261/285342 2024-02-11T09:58:30+01:00 High-spatial resolution UAV multispectral data complementing satellite imagery to characterize a chinstrap penguin colony ecosystem on deception island (Antarctica) Román, Alejandro Navarro, Gabriel Caballero, Isabel Tovar-Sánchez, Antonio Ministerio de Ciencia e Innovación (España) Agencia Estatal de Investigación (España) European Commission Ministerio de Ciencia, Innovación y Universidades (España) 2022 http://hdl.handle.net/10261/285342 https://doi.org/10.1080/15481603.2022.2101702 https://doi.org/10.13039/501100011033 https://doi.org/10.13039/501100000780 https://doi.org/10.13039/501100004837 en eng Taylor & Francis #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098048-B-I00/ES/EL PAPEL DE LOS PINGUINOS EN LOS CICLOS BIOGEOQUIMICOS DE METALES TRAZA EN EL OCEANO AUSTRAL/ info:eu-repo/grantAgreement/MICINN//EQC2018-004275-P info:eu-repo/grantAgreement/MICINN//EQC2019-005721 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098784-J-I00/ES/DESARROLLO DE ALGORITMOS DE BATIMETRIA Y CALIDAD DE AGUA MEDIANTE LOS SATELITES DE ALTA RESOLUCION ESPACIAL SENTINEL-2A%2FB PARA EL AVANCE DE APLICACIONES COSTERAS/ info:eu-repo/grantAgreement/MICINN//IJC2019-039382-I https://doi.org/10.1080/15481603.2022.2101702 Sí GIScience and Remote Sensing 59(1): 1159-1176 (2022) 1548-1603 http://hdl.handle.net/10261/285342 doi:10.1080/15481603.2022.2101702 1943-7226 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100004837 none Micasense UAV Sentinel-2 Landsat 8 Penguin colony Remote sensing artículo 2022 ftcsic https://doi.org/10.1080/15481603.2022.210170210.13039/50110001103310.13039/50110000078010.13039/501100004837 2024-01-16T11:32:18Z Remote sensing has evolved as an alternative to traditional techniques in the spatio-temporal monitoring of the Antarctic ecosystem, especially with the rapid expansion of the use of Unmanned Aerial Vehicles (UAVs), providing a centimeter-scale spatial resolution. In this study, the potential of a high-spatial resolution multispectral sensor embedded in a UAV is compared to medium resolution satellite remote sensing (Sentinel-2 and Landsat 8) to monitor the characteristics of the Vapor Col Chinstrap penguin (Pygoscelis antarcticus) colony ecosystem (Deception Island, South Shetlands Islands, Antarctica). Our main objective is to generate precise thematic maps of the typical ecosystem of penguin colonies derived from the supervised analysis of the spectral information obtained with these remote sensors. For this, two parametric classification algorithms (Maximum Likelihood, MLC, and Spectral Angle, SAC) and two non-parametric machine learning classifiers (Support Vector Machine, SVM, and Random Forest, RFC) are tested with UAV imagery, obtaining the best results with the SVM classifier (93.19% OA). Our study shows that the use of UAV outperforms satellite imagery (87.26% OA with Sentinel-2 Level 2 (S2L2) and 70.77% OA with Landsat 8 Level 2 (L8L2) in SVM classification) in the characterization of the substrate due to a higher spatial resolution, although differences between UAV and S2L2 are minimal. Thus, both sensors used in tandem could provide a broader and more precise view of how the area covered by the different elements of these ecosystems can change over time in a global climate change scenario. In addition, this study represents a precise UAV monitoring that takes place in this Chinstrap penguin colony, estimating a total coverage of approximately 20,000 m2 of guano areas in the study period. This research was funded by grants/projects RTI2018-098048-B-100 (PiMetAn), EQC2018-004275-P, EQC2019-005721, RTI2018-098784-J-I00 and IJC2019-039382-I funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way ... Article in Journal/Newspaper Antarc* Antarctic Antarctica antarcticus Chinstrap penguin Deception Island Digital.CSIC (Spanish National Research Council) Antarctic Deception Island ENVELOPE(-60.633,-60.633,-62.950,-62.950) Guano ENVELOPE(141.604,141.604,-66.775,-66.775) The Antarctic GIScience & Remote Sensing 59 1 1159 1176 |