_version_ 1821652699688468480
author Soriano, Miguel C.
Zunino, Luciano
author2 Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina)
Agencia Estatal de Investigación (España)
Ministerio de Economía y Competitividad (España)
Ministerio de Ciencia e Innovación (España)
Universidad de Las Islas Baleares
author_facet Soriano, Miguel C.
Zunino, Luciano
author_sort Soriano, Miguel C.
collection Digital.CSIC (Spanish National Research Council)
container_issue 8
container_start_page 969
container_title Entropy
container_volume 23
description This article belongs to the Special Issue Ordinal and Pattern-Based Quantifiers for Complex Time Series Analysis. Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon. This research was partially funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (MDM-2017-0711) and through the QUARESC project (PID2019-109094GB-C21 and -C22/AEI/10.13039/501100011033). The work of MCS has been supported by MICINN/AEI/FEDER and the University of the Balearic Islands through a “Ramon y Cajal” Fellowship (RYC-2015-18140).
format Article in Journal/Newspaper
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
geographic Argentina
geographic_facet Argentina
id ftcsic:oai:digital.csic.es:10261/266980
institution Open Polar
language unknown
op_collection_id ftcsic
op_doi https://doi.org/10.3390/e2308096910.13039/50110001103310.13039/50110000292310.13039/50110000483710.13039/50110000332910.13039/501100008975
op_relation #PLACEHOLDER_PARENT_METADATA_VALUE#
info:eu-repo/grantAgreement/MINECO//MDM-2017-0711
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109094GB-C21/ES/COMPUTACION CUANTICA CON RESERVORIOS Y SISTEMAS CUANTICOS COMPLEJOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109094GB-C22/ES/COMPUTACION CUANTICA EN RESERVORIOS Y SISTEMAS DINAMICOS NO-LINEALES/
info:eu-repo/grantAgreement/MINECO//RYC-2015-18140/ES/RYC-2015-18140/
Publisher's version
http://dx.doi.org/10.3390/e23080969

doi:10.3390/e23080969
e-issn: 1099-4300
Entropy 23(8): 969 (2021)
http://hdl.handle.net/10261/266980
http://dx.doi.org/10.13039/501100011033
http://dx.doi.org/10.13039/501100002923
http://dx.doi.org/10.13039/501100004837
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100008975
op_rights open
publishDate 2021
publisher Multidisciplinary Digital Publishing Institute
record_format openpolar
spelling ftcsic:oai:digital.csic.es:10261/266980 2025-01-16T23:44:02+00:00 Time-Delay Identification Using Multiscale Ordinal Quantifiers Soriano, Miguel C. Zunino, Luciano Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) Agencia Estatal de Investigación (España) Ministerio de Economía y Competitividad (España) Ministerio de Ciencia e Innovación (España) Universidad de Las Islas Baleares 2021-07-27 http://hdl.handle.net/10261/266980 https://doi.org/10.3390/e23080969 https://doi.org/10.13039/501100011033 https://doi.org/10.13039/501100002923 https://doi.org/10.13039/501100004837 https://doi.org/10.13039/501100003329 https://doi.org/10.13039/501100008975 unknown Multidisciplinary Digital Publishing Institute #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO//MDM-2017-0711 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109094GB-C21/ES/COMPUTACION CUANTICA CON RESERVORIOS Y SISTEMAS CUANTICOS COMPLEJOS/ info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109094GB-C22/ES/COMPUTACION CUANTICA EN RESERVORIOS Y SISTEMAS DINAMICOS NO-LINEALES/ info:eu-repo/grantAgreement/MINECO//RYC-2015-18140/ES/RYC-2015-18140/ Publisher's version http://dx.doi.org/10.3390/e23080969 Sí doi:10.3390/e23080969 e-issn: 1099-4300 Entropy 23(8): 969 (2021) http://hdl.handle.net/10261/266980 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100002923 http://dx.doi.org/10.13039/501100004837 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100008975 open Time-delay Time series Symbolic analysis Ordinal patterns Permutation entropy Weighted permutation entropy Ordinal Temporal Asymmetry Autocorrelation function Linear models Nonlinear models artículo http://purl.org/coar/resource_type/c_6501 2021 ftcsic https://doi.org/10.3390/e2308096910.13039/50110001103310.13039/50110000292310.13039/50110000483710.13039/50110000332910.13039/501100008975 2024-01-16T11:23:04Z This article belongs to the Special Issue Ordinal and Pattern-Based Quantifiers for Complex Time Series Analysis. Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon. This research was partially funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (MDM-2017-0711) and through the QUARESC project (PID2019-109094GB-C21 and -C22/AEI/10.13039/501100011033). The work of MCS has been supported by MICINN/AEI/FEDER and the University of the Balearic Islands through a “Ramon y Cajal” Fellowship (RYC-2015-18140). Article in Journal/Newspaper North Atlantic North Atlantic oscillation Digital.CSIC (Spanish National Research Council) Argentina Entropy 23 8 969
spellingShingle Time-delay
Time series
Symbolic analysis
Ordinal patterns
Permutation entropy
Weighted permutation entropy
Ordinal Temporal Asymmetry
Autocorrelation function
Linear models
Nonlinear models
Soriano, Miguel C.
Zunino, Luciano
Time-Delay Identification Using Multiscale Ordinal Quantifiers
title Time-Delay Identification Using Multiscale Ordinal Quantifiers
title_full Time-Delay Identification Using Multiscale Ordinal Quantifiers
title_fullStr Time-Delay Identification Using Multiscale Ordinal Quantifiers
title_full_unstemmed Time-Delay Identification Using Multiscale Ordinal Quantifiers
title_short Time-Delay Identification Using Multiscale Ordinal Quantifiers
title_sort time-delay identification using multiscale ordinal quantifiers
topic Time-delay
Time series
Symbolic analysis
Ordinal patterns
Permutation entropy
Weighted permutation entropy
Ordinal Temporal Asymmetry
Autocorrelation function
Linear models
Nonlinear models
topic_facet Time-delay
Time series
Symbolic analysis
Ordinal patterns
Permutation entropy
Weighted permutation entropy
Ordinal Temporal Asymmetry
Autocorrelation function
Linear models
Nonlinear models
url http://hdl.handle.net/10261/266980
https://doi.org/10.3390/e23080969
https://doi.org/10.13039/501100011033
https://doi.org/10.13039/501100002923
https://doi.org/10.13039/501100004837
https://doi.org/10.13039/501100003329
https://doi.org/10.13039/501100008975