Time-Delay Identification Using Multiscale Ordinal Quantifiers
This article belongs to the Special Issue Ordinal and Pattern-Based Quantifiers for Complex Time Series Analysis. Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are...
Published in: | Entropy |
---|---|
Main Authors: | , |
Other Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Multidisciplinary Digital Publishing Institute
2021
|
Subjects: | |
Online Access: | http://hdl.handle.net/10261/266980 https://doi.org/10.3390/e23080969 https://doi.org/10.13039/501100011033 https://doi.org/10.13039/501100002923 https://doi.org/10.13039/501100004837 https://doi.org/10.13039/501100003329 https://doi.org/10.13039/501100008975 |
_version_ | 1821652699688468480 |
---|---|
author | Soriano, Miguel C. Zunino, Luciano |
author2 | Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) Agencia Estatal de Investigación (España) Ministerio de Economía y Competitividad (España) Ministerio de Ciencia e Innovación (España) Universidad de Las Islas Baleares |
author_facet | Soriano, Miguel C. Zunino, Luciano |
author_sort | Soriano, Miguel C. |
collection | Digital.CSIC (Spanish National Research Council) |
container_issue | 8 |
container_start_page | 969 |
container_title | Entropy |
container_volume | 23 |
description | This article belongs to the Special Issue Ordinal and Pattern-Based Quantifiers for Complex Time Series Analysis. Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon. This research was partially funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (MDM-2017-0711) and through the QUARESC project (PID2019-109094GB-C21 and -C22/AEI/10.13039/501100011033). The work of MCS has been supported by MICINN/AEI/FEDER and the University of the Balearic Islands through a “Ramon y Cajal” Fellowship (RYC-2015-18140). |
format | Article in Journal/Newspaper |
genre | North Atlantic North Atlantic oscillation |
genre_facet | North Atlantic North Atlantic oscillation |
geographic | Argentina |
geographic_facet | Argentina |
id | ftcsic:oai:digital.csic.es:10261/266980 |
institution | Open Polar |
language | unknown |
op_collection_id | ftcsic |
op_doi | https://doi.org/10.3390/e2308096910.13039/50110001103310.13039/50110000292310.13039/50110000483710.13039/50110000332910.13039/501100008975 |
op_relation | #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO//MDM-2017-0711 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109094GB-C21/ES/COMPUTACION CUANTICA CON RESERVORIOS Y SISTEMAS CUANTICOS COMPLEJOS/ info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109094GB-C22/ES/COMPUTACION CUANTICA EN RESERVORIOS Y SISTEMAS DINAMICOS NO-LINEALES/ info:eu-repo/grantAgreement/MINECO//RYC-2015-18140/ES/RYC-2015-18140/ Publisher's version http://dx.doi.org/10.3390/e23080969 Sí doi:10.3390/e23080969 e-issn: 1099-4300 Entropy 23(8): 969 (2021) http://hdl.handle.net/10261/266980 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100002923 http://dx.doi.org/10.13039/501100004837 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100008975 |
op_rights | open |
publishDate | 2021 |
publisher | Multidisciplinary Digital Publishing Institute |
record_format | openpolar |
spelling | ftcsic:oai:digital.csic.es:10261/266980 2025-01-16T23:44:02+00:00 Time-Delay Identification Using Multiscale Ordinal Quantifiers Soriano, Miguel C. Zunino, Luciano Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) Agencia Estatal de Investigación (España) Ministerio de Economía y Competitividad (España) Ministerio de Ciencia e Innovación (España) Universidad de Las Islas Baleares 2021-07-27 http://hdl.handle.net/10261/266980 https://doi.org/10.3390/e23080969 https://doi.org/10.13039/501100011033 https://doi.org/10.13039/501100002923 https://doi.org/10.13039/501100004837 https://doi.org/10.13039/501100003329 https://doi.org/10.13039/501100008975 unknown Multidisciplinary Digital Publishing Institute #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO//MDM-2017-0711 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109094GB-C21/ES/COMPUTACION CUANTICA CON RESERVORIOS Y SISTEMAS CUANTICOS COMPLEJOS/ info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109094GB-C22/ES/COMPUTACION CUANTICA EN RESERVORIOS Y SISTEMAS DINAMICOS NO-LINEALES/ info:eu-repo/grantAgreement/MINECO//RYC-2015-18140/ES/RYC-2015-18140/ Publisher's version http://dx.doi.org/10.3390/e23080969 Sí doi:10.3390/e23080969 e-issn: 1099-4300 Entropy 23(8): 969 (2021) http://hdl.handle.net/10261/266980 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100002923 http://dx.doi.org/10.13039/501100004837 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100008975 open Time-delay Time series Symbolic analysis Ordinal patterns Permutation entropy Weighted permutation entropy Ordinal Temporal Asymmetry Autocorrelation function Linear models Nonlinear models artículo http://purl.org/coar/resource_type/c_6501 2021 ftcsic https://doi.org/10.3390/e2308096910.13039/50110001103310.13039/50110000292310.13039/50110000483710.13039/50110000332910.13039/501100008975 2024-01-16T11:23:04Z This article belongs to the Special Issue Ordinal and Pattern-Based Quantifiers for Complex Time Series Analysis. Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon. This research was partially funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (MDM-2017-0711) and through the QUARESC project (PID2019-109094GB-C21 and -C22/AEI/10.13039/501100011033). The work of MCS has been supported by MICINN/AEI/FEDER and the University of the Balearic Islands through a “Ramon y Cajal” Fellowship (RYC-2015-18140). Article in Journal/Newspaper North Atlantic North Atlantic oscillation Digital.CSIC (Spanish National Research Council) Argentina Entropy 23 8 969 |
spellingShingle | Time-delay Time series Symbolic analysis Ordinal patterns Permutation entropy Weighted permutation entropy Ordinal Temporal Asymmetry Autocorrelation function Linear models Nonlinear models Soriano, Miguel C. Zunino, Luciano Time-Delay Identification Using Multiscale Ordinal Quantifiers |
title | Time-Delay Identification Using Multiscale Ordinal Quantifiers |
title_full | Time-Delay Identification Using Multiscale Ordinal Quantifiers |
title_fullStr | Time-Delay Identification Using Multiscale Ordinal Quantifiers |
title_full_unstemmed | Time-Delay Identification Using Multiscale Ordinal Quantifiers |
title_short | Time-Delay Identification Using Multiscale Ordinal Quantifiers |
title_sort | time-delay identification using multiscale ordinal quantifiers |
topic | Time-delay Time series Symbolic analysis Ordinal patterns Permutation entropy Weighted permutation entropy Ordinal Temporal Asymmetry Autocorrelation function Linear models Nonlinear models |
topic_facet | Time-delay Time series Symbolic analysis Ordinal patterns Permutation entropy Weighted permutation entropy Ordinal Temporal Asymmetry Autocorrelation function Linear models Nonlinear models |
url | http://hdl.handle.net/10261/266980 https://doi.org/10.3390/e23080969 https://doi.org/10.13039/501100011033 https://doi.org/10.13039/501100002923 https://doi.org/10.13039/501100004837 https://doi.org/10.13039/501100003329 https://doi.org/10.13039/501100008975 |