Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels

A series of xerogels with a properly designed porous structure and surface chemistry have been synthesized and evaluated as a host structure to promote the nucleation and growth of methane hydrates. Organic xerogels (OGs) have been synthesized from resorcinol-formaldehyde mixtures using a sol-gel ap...

Full description

Bibliographic Details
Published in:Chemical Engineering Journal
Main Authors: Cuadrado-Collados, C., Farrando-Pérez, Judit, Martínez-Escandell, M., Ramírez Montoya, Luis Adrián, Menéndez Díaz, José Ángel, Arenillas de la Puente, Ana, Montes Morán, Miguel Ángel, Silvestre-Albero, J.
Other Authors: Ministerio de Economía y Competitividad (España), Principado de Asturias
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2020
Subjects:
Online Access:http://hdl.handle.net/10261/217241
https://doi.org/10.1016/j.cej.2020.126276
https://doi.org/10.13039/501100003329
https://doi.org/10.13039/100011941
id ftcsic:oai:digital.csic.es:10261/217241
record_format openpolar
spelling ftcsic:oai:digital.csic.es:10261/217241 2024-02-11T10:05:49+01:00 Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels Cuadrado-Collados, C. Farrando-Pérez, Judit Martínez-Escandell, M. Ramírez Montoya, Luis Adrián Menéndez Díaz, José Ángel Arenillas de la Puente, Ana Montes Morán, Miguel Ángel Silvestre-Albero, J. Ministerio de Economía y Competitividad (España) Principado de Asturias Ramírez Montoya, Luis Adrián Menéndez Díaz, José Ángel Arenillas de la Puente, Ana Montes Morán, Miguel Ángel 2020-07-16 http://hdl.handle.net/10261/217241 https://doi.org/10.1016/j.cej.2020.126276 https://doi.org/10.13039/501100003329 https://doi.org/10.13039/100011941 en eng Elsevier #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2016-80285-P info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/CTQ2017-87820-R Postprint https://doi.org/10.1016/j.cej.2020.126276 Sí Chemical Engineering Journal 402: 126276 (2020) 1385-8947 http://hdl.handle.net/10261/217241 doi:10.1016/j.cej.2020.126276 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/100011941 open Xerogels Gas hydrates Confinement effects Porous structure Surface chemistry artículo http://purl.org/coar/resource_type/c_6501 2020 ftcsic https://doi.org/10.1016/j.cej.2020.12627610.13039/50110000332910.13039/100011941 2024-01-16T10:56:39Z A series of xerogels with a properly designed porous structure and surface chemistry have been synthesized and evaluated as a host structure to promote the nucleation and growth of methane hydrates. Organic xerogels (OGs) have been synthesized from resorcinol-formaldehyde mixtures using a sol-gel approach and microwave heating. These xerogels are hydrophilic in nature and possess designed meso/macrocavities in the pore size range 5–55 nm. Carbon xerogels (CGs) have been synthesized from their organic counterparts after a carbonization treatment at high temperature. Interestingly, the carbonization process does not alter/modify substantially the porous network of the parent xerogels, while developing new micropores. Under water-supplying conditions, the two types of xerogels exhibit a large improvement in the methane adsorption capacity compared to the pure physisorption process taking place in dry conditions (up to 200% improvement), and associated with a significant hysteresis loop. These excellent values must be associated with the promoting effect of these xerogels in the water-to-hydrate conversion process. The comparison of OGs and CGs as a host structure anticipates that surface chemistry, total pore volume and pore size are critical parameters defining the extent and yield of the methane hydrate formation process. Authors would like to acknowledge financial support from the MINECO (projects MAT2016-80285-p and CTQ2017-87820-R). Principado de Asturias-FICYT-FEDER (Project PCTI-Asturias IDI/2018/000118) is also acknowledged. L.A. Ramírez-Montoya thanks CONACyT, México, for a post-doctoral grant (CVU No 330625, 2017). Peer reviewed Article in Journal/Newspaper Methane hydrate Digital.CSIC (Spanish National Research Council) Chemical Engineering Journal 402 126276
institution Open Polar
collection Digital.CSIC (Spanish National Research Council)
op_collection_id ftcsic
language English
topic Xerogels
Gas hydrates
Confinement effects
Porous structure
Surface chemistry
spellingShingle Xerogels
Gas hydrates
Confinement effects
Porous structure
Surface chemistry
Cuadrado-Collados, C.
Farrando-Pérez, Judit
Martínez-Escandell, M.
Ramírez Montoya, Luis Adrián
Menéndez Díaz, José Ángel
Arenillas de la Puente, Ana
Montes Morán, Miguel Ángel
Silvestre-Albero, J.
Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels
topic_facet Xerogels
Gas hydrates
Confinement effects
Porous structure
Surface chemistry
description A series of xerogels with a properly designed porous structure and surface chemistry have been synthesized and evaluated as a host structure to promote the nucleation and growth of methane hydrates. Organic xerogels (OGs) have been synthesized from resorcinol-formaldehyde mixtures using a sol-gel approach and microwave heating. These xerogels are hydrophilic in nature and possess designed meso/macrocavities in the pore size range 5–55 nm. Carbon xerogels (CGs) have been synthesized from their organic counterparts after a carbonization treatment at high temperature. Interestingly, the carbonization process does not alter/modify substantially the porous network of the parent xerogels, while developing new micropores. Under water-supplying conditions, the two types of xerogels exhibit a large improvement in the methane adsorption capacity compared to the pure physisorption process taking place in dry conditions (up to 200% improvement), and associated with a significant hysteresis loop. These excellent values must be associated with the promoting effect of these xerogels in the water-to-hydrate conversion process. The comparison of OGs and CGs as a host structure anticipates that surface chemistry, total pore volume and pore size are critical parameters defining the extent and yield of the methane hydrate formation process. Authors would like to acknowledge financial support from the MINECO (projects MAT2016-80285-p and CTQ2017-87820-R). Principado de Asturias-FICYT-FEDER (Project PCTI-Asturias IDI/2018/000118) is also acknowledged. L.A. Ramírez-Montoya thanks CONACyT, México, for a post-doctoral grant (CVU No 330625, 2017). Peer reviewed
author2 Ministerio de Economía y Competitividad (España)
Principado de Asturias
Ramírez Montoya, Luis Adrián
Menéndez Díaz, José Ángel
Arenillas de la Puente, Ana
Montes Morán, Miguel Ángel
format Article in Journal/Newspaper
author Cuadrado-Collados, C.
Farrando-Pérez, Judit
Martínez-Escandell, M.
Ramírez Montoya, Luis Adrián
Menéndez Díaz, José Ángel
Arenillas de la Puente, Ana
Montes Morán, Miguel Ángel
Silvestre-Albero, J.
author_facet Cuadrado-Collados, C.
Farrando-Pérez, Judit
Martínez-Escandell, M.
Ramírez Montoya, Luis Adrián
Menéndez Díaz, José Ángel
Arenillas de la Puente, Ana
Montes Morán, Miguel Ángel
Silvestre-Albero, J.
author_sort Cuadrado-Collados, C.
title Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels
title_short Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels
title_full Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels
title_fullStr Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels
title_full_unstemmed Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels
title_sort well-defined meso/macroporous materials as a host structure for methane hydrate formation: organic versus carbon xerogels
publisher Elsevier
publishDate 2020
url http://hdl.handle.net/10261/217241
https://doi.org/10.1016/j.cej.2020.126276
https://doi.org/10.13039/501100003329
https://doi.org/10.13039/100011941
genre Methane hydrate
genre_facet Methane hydrate
op_relation #PLACEHOLDER_PARENT_METADATA_VALUE#
info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2016-80285-P
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/CTQ2017-87820-R
Postprint
https://doi.org/10.1016/j.cej.2020.126276

Chemical Engineering Journal 402: 126276 (2020)
1385-8947
http://hdl.handle.net/10261/217241
doi:10.1016/j.cej.2020.126276
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/100011941
op_rights open
op_doi https://doi.org/10.1016/j.cej.2020.12627610.13039/50110000332910.13039/100011941
container_title Chemical Engineering Journal
container_volume 402
container_start_page 126276
_version_ 1790603003335540736