Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels
A series of xerogels with a properly designed porous structure and surface chemistry have been synthesized and evaluated as a host structure to promote the nucleation and growth of methane hydrates. Organic xerogels (OGs) have been synthesized from resorcinol-formaldehyde mixtures using a sol-gel ap...
Published in: | Chemical Engineering Journal |
---|---|
Main Authors: | , , , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Elsevier
2020
|
Subjects: | |
Online Access: | http://hdl.handle.net/10261/217241 https://doi.org/10.1016/j.cej.2020.126276 https://doi.org/10.13039/501100003329 https://doi.org/10.13039/100011941 |
id |
ftcsic:oai:digital.csic.es:10261/217241 |
---|---|
record_format |
openpolar |
spelling |
ftcsic:oai:digital.csic.es:10261/217241 2024-02-11T10:05:49+01:00 Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels Cuadrado-Collados, C. Farrando-Pérez, Judit Martínez-Escandell, M. Ramírez Montoya, Luis Adrián Menéndez Díaz, José Ángel Arenillas de la Puente, Ana Montes Morán, Miguel Ángel Silvestre-Albero, J. Ministerio de Economía y Competitividad (España) Principado de Asturias Ramírez Montoya, Luis Adrián Menéndez Díaz, José Ángel Arenillas de la Puente, Ana Montes Morán, Miguel Ángel 2020-07-16 http://hdl.handle.net/10261/217241 https://doi.org/10.1016/j.cej.2020.126276 https://doi.org/10.13039/501100003329 https://doi.org/10.13039/100011941 en eng Elsevier #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2016-80285-P info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/CTQ2017-87820-R Postprint https://doi.org/10.1016/j.cej.2020.126276 Sí Chemical Engineering Journal 402: 126276 (2020) 1385-8947 http://hdl.handle.net/10261/217241 doi:10.1016/j.cej.2020.126276 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/100011941 open Xerogels Gas hydrates Confinement effects Porous structure Surface chemistry artículo http://purl.org/coar/resource_type/c_6501 2020 ftcsic https://doi.org/10.1016/j.cej.2020.12627610.13039/50110000332910.13039/100011941 2024-01-16T10:56:39Z A series of xerogels with a properly designed porous structure and surface chemistry have been synthesized and evaluated as a host structure to promote the nucleation and growth of methane hydrates. Organic xerogels (OGs) have been synthesized from resorcinol-formaldehyde mixtures using a sol-gel approach and microwave heating. These xerogels are hydrophilic in nature and possess designed meso/macrocavities in the pore size range 5–55 nm. Carbon xerogels (CGs) have been synthesized from their organic counterparts after a carbonization treatment at high temperature. Interestingly, the carbonization process does not alter/modify substantially the porous network of the parent xerogels, while developing new micropores. Under water-supplying conditions, the two types of xerogels exhibit a large improvement in the methane adsorption capacity compared to the pure physisorption process taking place in dry conditions (up to 200% improvement), and associated with a significant hysteresis loop. These excellent values must be associated with the promoting effect of these xerogels in the water-to-hydrate conversion process. The comparison of OGs and CGs as a host structure anticipates that surface chemistry, total pore volume and pore size are critical parameters defining the extent and yield of the methane hydrate formation process. Authors would like to acknowledge financial support from the MINECO (projects MAT2016-80285-p and CTQ2017-87820-R). Principado de Asturias-FICYT-FEDER (Project PCTI-Asturias IDI/2018/000118) is also acknowledged. L.A. Ramírez-Montoya thanks CONACyT, México, for a post-doctoral grant (CVU No 330625, 2017). Peer reviewed Article in Journal/Newspaper Methane hydrate Digital.CSIC (Spanish National Research Council) Chemical Engineering Journal 402 126276 |
institution |
Open Polar |
collection |
Digital.CSIC (Spanish National Research Council) |
op_collection_id |
ftcsic |
language |
English |
topic |
Xerogels Gas hydrates Confinement effects Porous structure Surface chemistry |
spellingShingle |
Xerogels Gas hydrates Confinement effects Porous structure Surface chemistry Cuadrado-Collados, C. Farrando-Pérez, Judit Martínez-Escandell, M. Ramírez Montoya, Luis Adrián Menéndez Díaz, José Ángel Arenillas de la Puente, Ana Montes Morán, Miguel Ángel Silvestre-Albero, J. Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels |
topic_facet |
Xerogels Gas hydrates Confinement effects Porous structure Surface chemistry |
description |
A series of xerogels with a properly designed porous structure and surface chemistry have been synthesized and evaluated as a host structure to promote the nucleation and growth of methane hydrates. Organic xerogels (OGs) have been synthesized from resorcinol-formaldehyde mixtures using a sol-gel approach and microwave heating. These xerogels are hydrophilic in nature and possess designed meso/macrocavities in the pore size range 5–55 nm. Carbon xerogels (CGs) have been synthesized from their organic counterparts after a carbonization treatment at high temperature. Interestingly, the carbonization process does not alter/modify substantially the porous network of the parent xerogels, while developing new micropores. Under water-supplying conditions, the two types of xerogels exhibit a large improvement in the methane adsorption capacity compared to the pure physisorption process taking place in dry conditions (up to 200% improvement), and associated with a significant hysteresis loop. These excellent values must be associated with the promoting effect of these xerogels in the water-to-hydrate conversion process. The comparison of OGs and CGs as a host structure anticipates that surface chemistry, total pore volume and pore size are critical parameters defining the extent and yield of the methane hydrate formation process. Authors would like to acknowledge financial support from the MINECO (projects MAT2016-80285-p and CTQ2017-87820-R). Principado de Asturias-FICYT-FEDER (Project PCTI-Asturias IDI/2018/000118) is also acknowledged. L.A. Ramírez-Montoya thanks CONACyT, México, for a post-doctoral grant (CVU No 330625, 2017). Peer reviewed |
author2 |
Ministerio de Economía y Competitividad (España) Principado de Asturias Ramírez Montoya, Luis Adrián Menéndez Díaz, José Ángel Arenillas de la Puente, Ana Montes Morán, Miguel Ángel |
format |
Article in Journal/Newspaper |
author |
Cuadrado-Collados, C. Farrando-Pérez, Judit Martínez-Escandell, M. Ramírez Montoya, Luis Adrián Menéndez Díaz, José Ángel Arenillas de la Puente, Ana Montes Morán, Miguel Ángel Silvestre-Albero, J. |
author_facet |
Cuadrado-Collados, C. Farrando-Pérez, Judit Martínez-Escandell, M. Ramírez Montoya, Luis Adrián Menéndez Díaz, José Ángel Arenillas de la Puente, Ana Montes Morán, Miguel Ángel Silvestre-Albero, J. |
author_sort |
Cuadrado-Collados, C. |
title |
Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels |
title_short |
Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels |
title_full |
Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels |
title_fullStr |
Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels |
title_full_unstemmed |
Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels |
title_sort |
well-defined meso/macroporous materials as a host structure for methane hydrate formation: organic versus carbon xerogels |
publisher |
Elsevier |
publishDate |
2020 |
url |
http://hdl.handle.net/10261/217241 https://doi.org/10.1016/j.cej.2020.126276 https://doi.org/10.13039/501100003329 https://doi.org/10.13039/100011941 |
genre |
Methane hydrate |
genre_facet |
Methane hydrate |
op_relation |
#PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2016-80285-P info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/CTQ2017-87820-R Postprint https://doi.org/10.1016/j.cej.2020.126276 Sí Chemical Engineering Journal 402: 126276 (2020) 1385-8947 http://hdl.handle.net/10261/217241 doi:10.1016/j.cej.2020.126276 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/100011941 |
op_rights |
open |
op_doi |
https://doi.org/10.1016/j.cej.2020.12627610.13039/50110000332910.13039/100011941 |
container_title |
Chemical Engineering Journal |
container_volume |
402 |
container_start_page |
126276 |
_version_ |
1790603003335540736 |