Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach

Enzyme promiscuity attracts the interest of the industrial and academic sectors because of its application in the design of biocatalysts. The amidase activity of Candida antarctica lipase B (CALB) on two different substrates has been studied by theoretical quantum mechanics/molecular mechanics metho...

Full description

Bibliographic Details
Published in:ACS Catalysis
Main Authors: Galmés, Miquel A., García-Junceda, Eduardo, Świderek, Katarzyna, Moliner, Vicent
Other Authors: Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), Universidad Jaime I, National Institutes of Health (US), Agencia Estatal de Investigación (España)
Format: Article in Journal/Newspaper
Language:English
Published: American Chemical Society 2020
Subjects:
Online Access:http://hdl.handle.net/10261/203760
https://doi.org/10.1021/acscatal.9b04002
https://doi.org/10.13039/501100011033
https://doi.org/10.13039/501100004834
https://doi.org/10.13039/100000002
https://doi.org/10.13039/501100003329
id ftcsic:oai:digital.csic.es:10261/203760
record_format openpolar
spelling ftcsic:oai:digital.csic.es:10261/203760 2024-02-11T09:58:45+01:00 Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach Galmés, Miquel A. García-Junceda, Eduardo Świderek, Katarzyna Moliner, Vicent Ministerio de Ciencia, Innovación y Universidades (España) Ministerio de Economía y Competitividad (España) Universidad Jaime I National Institutes of Health (US) Agencia Estatal de Investigación (España) García-Junceda, Eduardo 2020-01-18 http://hdl.handle.net/10261/203760 https://doi.org/10.1021/acscatal.9b04002 https://doi.org/10.13039/501100011033 https://doi.org/10.13039/501100004834 https://doi.org/10.13039/100000002 https://doi.org/10.13039/501100003329 en eng American Chemical Society #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094852-B-C21 info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2015-65184-C2-2-R info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/IJCI-2016-27503 PGC2018-094852-B-C21/AEI/10.13039/501100011033 Publisher's version https://doi.org/10.1021/acscatal.9b04002 Sí ACS Catalysis 10(3): 1938-1946 (2020) http://hdl.handle.net/10261/203760 doi:10.1021/acscatal.9b04002 2155-5435 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100004834 http://dx.doi.org/10.13039/100000002 http://dx.doi.org/10.13039/501100003329 open Computational chemistry Enzyme catalysis Enzyme promiscuity QM/MM Molecular dynamics Free energy surfaces artículo http://purl.org/coar/resource_type/c_6501 2020 ftcsic https://doi.org/10.1021/acscatal.9b0400210.13039/50110001103310.13039/50110000483410.13039/10000000210.13039/501100003329 2024-01-16T10:49:58Z Enzyme promiscuity attracts the interest of the industrial and academic sectors because of its application in the design of biocatalysts. The amidase activity of Candida antarctica lipase B (CALB) on two different substrates has been studied by theoretical quantum mechanics/molecular mechanics methods, supported by experimental kinetic measurements. The aim of the study is to understand the substrate promiscuity of CALB in this secondary reaction and the origin of its promiscuous catalytic activity. The computational results predict activation free energies in very good agreement with the kinetic data and confirm that the activity of CALB as an amidase, despite depending on the features of the amide substrate, is dictated by the electrostatic effects of the protein. The protein polarizes and activates the substrate as well as stabilizes the transition state, thus enhancing the rate constant. Our results can provide guides for future designs of biocatalysts based on electrostatic arguments. This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (Grant PGC2018-094852-B-C21), the Spanish Ministerio de Economía y Competitividad (Grant MAT2015-65184-C2-2-R), Universitat Jaume I (project UJI·B2017- 31), and the National Institutes of Health (Ref no. NIH R01 GM065368). K.Ś. thanks the MINECO for a Juan de la Cierva—Incorporación (ref IJCI-2016-27503) contract. M.À.G. thanks Universitat Jaume I for a doctoral FPI grant (PREDOC/2017/23). Peer reviewed Article in Journal/Newspaper Antarc* Antarctica Digital.CSIC (Spanish National Research Council) Cierva ENVELOPE(-60.873,-60.873,-64.156,-64.156) Jaume ENVELOPE(-63.750,-63.750,-65.483,-65.483) ACS Catalysis 10 3 1938 1946
institution Open Polar
collection Digital.CSIC (Spanish National Research Council)
op_collection_id ftcsic
language English
topic Computational chemistry
Enzyme catalysis
Enzyme promiscuity
QM/MM
Molecular dynamics
Free energy surfaces
spellingShingle Computational chemistry
Enzyme catalysis
Enzyme promiscuity
QM/MM
Molecular dynamics
Free energy surfaces
Galmés, Miquel A.
García-Junceda, Eduardo
Świderek, Katarzyna
Moliner, Vicent
Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach
topic_facet Computational chemistry
Enzyme catalysis
Enzyme promiscuity
QM/MM
Molecular dynamics
Free energy surfaces
description Enzyme promiscuity attracts the interest of the industrial and academic sectors because of its application in the design of biocatalysts. The amidase activity of Candida antarctica lipase B (CALB) on two different substrates has been studied by theoretical quantum mechanics/molecular mechanics methods, supported by experimental kinetic measurements. The aim of the study is to understand the substrate promiscuity of CALB in this secondary reaction and the origin of its promiscuous catalytic activity. The computational results predict activation free energies in very good agreement with the kinetic data and confirm that the activity of CALB as an amidase, despite depending on the features of the amide substrate, is dictated by the electrostatic effects of the protein. The protein polarizes and activates the substrate as well as stabilizes the transition state, thus enhancing the rate constant. Our results can provide guides for future designs of biocatalysts based on electrostatic arguments. This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (Grant PGC2018-094852-B-C21), the Spanish Ministerio de Economía y Competitividad (Grant MAT2015-65184-C2-2-R), Universitat Jaume I (project UJI·B2017- 31), and the National Institutes of Health (Ref no. NIH R01 GM065368). K.Ś. thanks the MINECO for a Juan de la Cierva—Incorporación (ref IJCI-2016-27503) contract. M.À.G. thanks Universitat Jaume I for a doctoral FPI grant (PREDOC/2017/23). Peer reviewed
author2 Ministerio de Ciencia, Innovación y Universidades (España)
Ministerio de Economía y Competitividad (España)
Universidad Jaime I
National Institutes of Health (US)
Agencia Estatal de Investigación (España)
García-Junceda, Eduardo
format Article in Journal/Newspaper
author Galmés, Miquel A.
García-Junceda, Eduardo
Świderek, Katarzyna
Moliner, Vicent
author_facet Galmés, Miquel A.
García-Junceda, Eduardo
Świderek, Katarzyna
Moliner, Vicent
author_sort Galmés, Miquel A.
title Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach
title_short Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach
title_full Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach
title_fullStr Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach
title_full_unstemmed Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach
title_sort exploring the origin of amidase substrate promiscuity in calb by a computational approach
publisher American Chemical Society
publishDate 2020
url http://hdl.handle.net/10261/203760
https://doi.org/10.1021/acscatal.9b04002
https://doi.org/10.13039/501100011033
https://doi.org/10.13039/501100004834
https://doi.org/10.13039/100000002
https://doi.org/10.13039/501100003329
long_lat ENVELOPE(-60.873,-60.873,-64.156,-64.156)
ENVELOPE(-63.750,-63.750,-65.483,-65.483)
geographic Cierva
Jaume
geographic_facet Cierva
Jaume
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation #PLACEHOLDER_PARENT_METADATA_VALUE#
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094852-B-C21
info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2015-65184-C2-2-R
info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/IJCI-2016-27503
PGC2018-094852-B-C21/AEI/10.13039/501100011033
Publisher's version
https://doi.org/10.1021/acscatal.9b04002

ACS Catalysis 10(3): 1938-1946 (2020)
http://hdl.handle.net/10261/203760
doi:10.1021/acscatal.9b04002
2155-5435
http://dx.doi.org/10.13039/501100011033
http://dx.doi.org/10.13039/501100004834
http://dx.doi.org/10.13039/100000002
http://dx.doi.org/10.13039/501100003329
op_rights open
op_doi https://doi.org/10.1021/acscatal.9b0400210.13039/50110001103310.13039/50110000483410.13039/10000000210.13039/501100003329
container_title ACS Catalysis
container_volume 10
container_issue 3
container_start_page 1938
op_container_end_page 1946
_version_ 1790594505526738944