Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach
Enzyme promiscuity attracts the interest of the industrial and academic sectors because of its application in the design of biocatalysts. The amidase activity of Candida antarctica lipase B (CALB) on two different substrates has been studied by theoretical quantum mechanics/molecular mechanics metho...
Published in: | ACS Catalysis |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Chemical Society
2020
|
Subjects: | |
Online Access: | http://hdl.handle.net/10261/203760 https://doi.org/10.1021/acscatal.9b04002 https://doi.org/10.13039/501100011033 https://doi.org/10.13039/501100004834 https://doi.org/10.13039/100000002 https://doi.org/10.13039/501100003329 |
id |
ftcsic:oai:digital.csic.es:10261/203760 |
---|---|
record_format |
openpolar |
spelling |
ftcsic:oai:digital.csic.es:10261/203760 2024-02-11T09:58:45+01:00 Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach Galmés, Miquel A. García-Junceda, Eduardo Świderek, Katarzyna Moliner, Vicent Ministerio de Ciencia, Innovación y Universidades (España) Ministerio de Economía y Competitividad (España) Universidad Jaime I National Institutes of Health (US) Agencia Estatal de Investigación (España) García-Junceda, Eduardo 2020-01-18 http://hdl.handle.net/10261/203760 https://doi.org/10.1021/acscatal.9b04002 https://doi.org/10.13039/501100011033 https://doi.org/10.13039/501100004834 https://doi.org/10.13039/100000002 https://doi.org/10.13039/501100003329 en eng American Chemical Society #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094852-B-C21 info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2015-65184-C2-2-R info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/IJCI-2016-27503 PGC2018-094852-B-C21/AEI/10.13039/501100011033 Publisher's version https://doi.org/10.1021/acscatal.9b04002 Sí ACS Catalysis 10(3): 1938-1946 (2020) http://hdl.handle.net/10261/203760 doi:10.1021/acscatal.9b04002 2155-5435 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100004834 http://dx.doi.org/10.13039/100000002 http://dx.doi.org/10.13039/501100003329 open Computational chemistry Enzyme catalysis Enzyme promiscuity QM/MM Molecular dynamics Free energy surfaces artículo http://purl.org/coar/resource_type/c_6501 2020 ftcsic https://doi.org/10.1021/acscatal.9b0400210.13039/50110001103310.13039/50110000483410.13039/10000000210.13039/501100003329 2024-01-16T10:49:58Z Enzyme promiscuity attracts the interest of the industrial and academic sectors because of its application in the design of biocatalysts. The amidase activity of Candida antarctica lipase B (CALB) on two different substrates has been studied by theoretical quantum mechanics/molecular mechanics methods, supported by experimental kinetic measurements. The aim of the study is to understand the substrate promiscuity of CALB in this secondary reaction and the origin of its promiscuous catalytic activity. The computational results predict activation free energies in very good agreement with the kinetic data and confirm that the activity of CALB as an amidase, despite depending on the features of the amide substrate, is dictated by the electrostatic effects of the protein. The protein polarizes and activates the substrate as well as stabilizes the transition state, thus enhancing the rate constant. Our results can provide guides for future designs of biocatalysts based on electrostatic arguments. This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (Grant PGC2018-094852-B-C21), the Spanish Ministerio de Economía y Competitividad (Grant MAT2015-65184-C2-2-R), Universitat Jaume I (project UJI·B2017- 31), and the National Institutes of Health (Ref no. NIH R01 GM065368). K.Ś. thanks the MINECO for a Juan de la Cierva—Incorporación (ref IJCI-2016-27503) contract. M.À.G. thanks Universitat Jaume I for a doctoral FPI grant (PREDOC/2017/23). Peer reviewed Article in Journal/Newspaper Antarc* Antarctica Digital.CSIC (Spanish National Research Council) Cierva ENVELOPE(-60.873,-60.873,-64.156,-64.156) Jaume ENVELOPE(-63.750,-63.750,-65.483,-65.483) ACS Catalysis 10 3 1938 1946 |
institution |
Open Polar |
collection |
Digital.CSIC (Spanish National Research Council) |
op_collection_id |
ftcsic |
language |
English |
topic |
Computational chemistry Enzyme catalysis Enzyme promiscuity QM/MM Molecular dynamics Free energy surfaces |
spellingShingle |
Computational chemistry Enzyme catalysis Enzyme promiscuity QM/MM Molecular dynamics Free energy surfaces Galmés, Miquel A. García-Junceda, Eduardo Świderek, Katarzyna Moliner, Vicent Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach |
topic_facet |
Computational chemistry Enzyme catalysis Enzyme promiscuity QM/MM Molecular dynamics Free energy surfaces |
description |
Enzyme promiscuity attracts the interest of the industrial and academic sectors because of its application in the design of biocatalysts. The amidase activity of Candida antarctica lipase B (CALB) on two different substrates has been studied by theoretical quantum mechanics/molecular mechanics methods, supported by experimental kinetic measurements. The aim of the study is to understand the substrate promiscuity of CALB in this secondary reaction and the origin of its promiscuous catalytic activity. The computational results predict activation free energies in very good agreement with the kinetic data and confirm that the activity of CALB as an amidase, despite depending on the features of the amide substrate, is dictated by the electrostatic effects of the protein. The protein polarizes and activates the substrate as well as stabilizes the transition state, thus enhancing the rate constant. Our results can provide guides for future designs of biocatalysts based on electrostatic arguments. This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (Grant PGC2018-094852-B-C21), the Spanish Ministerio de Economía y Competitividad (Grant MAT2015-65184-C2-2-R), Universitat Jaume I (project UJI·B2017- 31), and the National Institutes of Health (Ref no. NIH R01 GM065368). K.Ś. thanks the MINECO for a Juan de la Cierva—Incorporación (ref IJCI-2016-27503) contract. M.À.G. thanks Universitat Jaume I for a doctoral FPI grant (PREDOC/2017/23). Peer reviewed |
author2 |
Ministerio de Ciencia, Innovación y Universidades (España) Ministerio de Economía y Competitividad (España) Universidad Jaime I National Institutes of Health (US) Agencia Estatal de Investigación (España) García-Junceda, Eduardo |
format |
Article in Journal/Newspaper |
author |
Galmés, Miquel A. García-Junceda, Eduardo Świderek, Katarzyna Moliner, Vicent |
author_facet |
Galmés, Miquel A. García-Junceda, Eduardo Świderek, Katarzyna Moliner, Vicent |
author_sort |
Galmés, Miquel A. |
title |
Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach |
title_short |
Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach |
title_full |
Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach |
title_fullStr |
Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach |
title_full_unstemmed |
Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach |
title_sort |
exploring the origin of amidase substrate promiscuity in calb by a computational approach |
publisher |
American Chemical Society |
publishDate |
2020 |
url |
http://hdl.handle.net/10261/203760 https://doi.org/10.1021/acscatal.9b04002 https://doi.org/10.13039/501100011033 https://doi.org/10.13039/501100004834 https://doi.org/10.13039/100000002 https://doi.org/10.13039/501100003329 |
long_lat |
ENVELOPE(-60.873,-60.873,-64.156,-64.156) ENVELOPE(-63.750,-63.750,-65.483,-65.483) |
geographic |
Cierva Jaume |
geographic_facet |
Cierva Jaume |
genre |
Antarc* Antarctica |
genre_facet |
Antarc* Antarctica |
op_relation |
#PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094852-B-C21 info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2015-65184-C2-2-R info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/IJCI-2016-27503 PGC2018-094852-B-C21/AEI/10.13039/501100011033 Publisher's version https://doi.org/10.1021/acscatal.9b04002 Sí ACS Catalysis 10(3): 1938-1946 (2020) http://hdl.handle.net/10261/203760 doi:10.1021/acscatal.9b04002 2155-5435 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100004834 http://dx.doi.org/10.13039/100000002 http://dx.doi.org/10.13039/501100003329 |
op_rights |
open |
op_doi |
https://doi.org/10.1021/acscatal.9b0400210.13039/50110001103310.13039/50110000483410.13039/10000000210.13039/501100003329 |
container_title |
ACS Catalysis |
container_volume |
10 |
container_issue |
3 |
container_start_page |
1938 |
op_container_end_page |
1946 |
_version_ |
1790594505526738944 |