Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory

Molecular hydrogen (H2) from volcanic emissions is suggested to warm the Martian surface when carbon dioxide (CO2) levels dropped from the Noachian (4100 to 3700 Myr) to the Hesperian (3700 to 3000 Myr). Its presence is expected to shift the conversion of molecular nitrogen (N2) into different forms...

Full description

Bibliographic Details
Main Authors: Navarro-González, Rafael, Navarro, Karina F., Coll, Patrice, McKay, Christopher P., Stern, Jennifer C., Sutter, Brad, Douglas Archer Jr, P., Cabane, Michel, Conrad, Pamela G., Eigenbrode, Jennifer L., Franz, Heather B., Freissinet, Caroline, Glavin, Daniel P., Hogancamp, Joanna V., McAdam, Amy C., Malespin, Charles A., Martín-Torres, F. J., Ming, Douglas W., Morris, Richard V., Prats, Benny, Raulin, François, Rodriguez Manfredi, Jose Antonio, Szopa, Cyril, Zorzano, María Paz, Mahaffy, P.R., Atreya, Sushil, Trainer, Melissa G., Vasavada, Ashwin R.
Other Authors: Universidad Nacional Autónoma de México, Consejo Nacional de Ciencia y Tecnología (México)
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2019
Subjects:
Online Access:http://hdl.handle.net/10261/203453
https://doi.org/10.1029/2018JE005852
https://doi.org/10.13039/501100005739
https://doi.org/10.13039/501100003141
id ftcsic:oai:digital.csic.es:10261/203453
record_format openpolar
spelling ftcsic:oai:digital.csic.es:10261/203453 2024-02-11T10:09:27+01:00 Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory Navarro-González, Rafael Navarro, Karina F. Coll, Patrice McKay, Christopher P. Stern, Jennifer C. Sutter, Brad Douglas Archer Jr, P. Cabane, Michel Conrad, Pamela G. Eigenbrode, Jennifer L. Franz, Heather B. Freissinet, Caroline Glavin, Daniel P. Hogancamp, Joanna V. McAdam, Amy C. Malespin, Charles A. Martín-Torres, F. J. Ming, Douglas W. Morris, Richard V. Prats, Benny Raulin, François Rodriguez Manfredi, Jose Antonio Szopa, Cyril Zorzano, María Paz Mahaffy, P.R. Atreya, Sushil Trainer, Melissa G. Vasavada, Ashwin R. Universidad Nacional Autónoma de México Consejo Nacional de Ciencia y Tecnología (México) 2019 http://hdl.handle.net/10261/203453 https://doi.org/10.1029/2018JE005852 https://doi.org/10.13039/501100005739 https://doi.org/10.13039/501100003141 unknown American Geophysical Union Publisher's version http://dx.doi.org/10.1029/2018JE005852 Sí doi:10.1029/2018JE005852 issn: 2169-9100 Journal of Geophysical Research - Part E - Planets 124: 94-13 (2019) http://hdl.handle.net/10261/203453 http://dx.doi.org/10.13039/501100005739 http://dx.doi.org/10.13039/501100003141 open artículo http://purl.org/coar/resource_type/c_6501 2019 ftcsic https://doi.org/10.1029/2018JE00585210.13039/50110000573910.13039/501100003141 2024-01-16T10:49:49Z Molecular hydrogen (H2) from volcanic emissions is suggested to warm the Martian surface when carbon dioxide (CO2) levels dropped from the Noachian (4100 to 3700 Myr) to the Hesperian (3700 to 3000 Myr). Its presence is expected to shift the conversion of molecular nitrogen (N2) into different forms of fixed nitrogen (N). Here we present experimental data and theoretical calculations that investigate the efficiency of nitrogen fixation by bolide impacts in CO2‐N2 atmospheres with or without H2. Surprisingly, nitricoxide(NO)wasproducedmoreefficientlyin20%H2 inspiteofbeingareducingagentandnotlikelyto increase the rate of nitrogen oxidation. Nevertheless, its presence led to a faster cooling of the shock wave raising the freeze‐out temperature of NO resulting in an enhanced yield. We estimate that the nitrogen fixation rate by bolide impacts varied from 7 × 10−4 to 2 × 10−3 g N·Myr−1·cm−2 and could imply fluvial concentration to explain the nitrogen (1.4 ± 0.7 g N·Myr−1·cm−2) detected as nitrite (NO2−) and nitrate (NO3−) by Curiosity at Yellowknife Bay. One possible explanation is that the nitrogen detected in the lacustrine sediments at Gale was deposited entirely on the crater's surface and was subsequently dissolved and transported by superficial and ground waters to the lake during favorable wet climatic conditions. The nitrogencontentsharplydecreasesinyoungersedimentsoftheMurrayformationsuggestingadeclineofH2 in the atmosphere and the rise of oxidizing conditions causing a shortage in the supply to putative microbial life. We acknowledge the NASA Mars Science Laboratory Program, Centre National d'Études Spatiales, the Universidad Nacional Autónoma de México (PAPIIT IN109416, IN111619, and PAPIME PE103216), and the Consejo Nacional de Ciencia y Tecnología de México (CONACyT 220626) for their support. We thank Fred Calef for constructing Figure 4 and appreciate the interest and support received from John P. Grotzinger and Joy A. Crisp throughout the Curiosity mission. The authors are grateful to the SAM and MSL teams ... Article in Journal/Newspaper Yellowknife Digital.CSIC (Spanish National Research Council) Papiit ENVELOPE(-77.196,-77.196,61.475,61.475) Yellowknife Yellowknife Bay ENVELOPE(-114.336,-114.336,62.367,62.367)
institution Open Polar
collection Digital.CSIC (Spanish National Research Council)
op_collection_id ftcsic
language unknown
description Molecular hydrogen (H2) from volcanic emissions is suggested to warm the Martian surface when carbon dioxide (CO2) levels dropped from the Noachian (4100 to 3700 Myr) to the Hesperian (3700 to 3000 Myr). Its presence is expected to shift the conversion of molecular nitrogen (N2) into different forms of fixed nitrogen (N). Here we present experimental data and theoretical calculations that investigate the efficiency of nitrogen fixation by bolide impacts in CO2‐N2 atmospheres with or without H2. Surprisingly, nitricoxide(NO)wasproducedmoreefficientlyin20%H2 inspiteofbeingareducingagentandnotlikelyto increase the rate of nitrogen oxidation. Nevertheless, its presence led to a faster cooling of the shock wave raising the freeze‐out temperature of NO resulting in an enhanced yield. We estimate that the nitrogen fixation rate by bolide impacts varied from 7 × 10−4 to 2 × 10−3 g N·Myr−1·cm−2 and could imply fluvial concentration to explain the nitrogen (1.4 ± 0.7 g N·Myr−1·cm−2) detected as nitrite (NO2−) and nitrate (NO3−) by Curiosity at Yellowknife Bay. One possible explanation is that the nitrogen detected in the lacustrine sediments at Gale was deposited entirely on the crater's surface and was subsequently dissolved and transported by superficial and ground waters to the lake during favorable wet climatic conditions. The nitrogencontentsharplydecreasesinyoungersedimentsoftheMurrayformationsuggestingadeclineofH2 in the atmosphere and the rise of oxidizing conditions causing a shortage in the supply to putative microbial life. We acknowledge the NASA Mars Science Laboratory Program, Centre National d'Études Spatiales, the Universidad Nacional Autónoma de México (PAPIIT IN109416, IN111619, and PAPIME PE103216), and the Consejo Nacional de Ciencia y Tecnología de México (CONACyT 220626) for their support. We thank Fred Calef for constructing Figure 4 and appreciate the interest and support received from John P. Grotzinger and Joy A. Crisp throughout the Curiosity mission. The authors are grateful to the SAM and MSL teams ...
author2 Universidad Nacional Autónoma de México
Consejo Nacional de Ciencia y Tecnología (México)
format Article in Journal/Newspaper
author Navarro-González, Rafael
Navarro, Karina F.
Coll, Patrice
McKay, Christopher P.
Stern, Jennifer C.
Sutter, Brad
Douglas Archer Jr, P.
Cabane, Michel
Conrad, Pamela G.
Eigenbrode, Jennifer L.
Franz, Heather B.
Freissinet, Caroline
Glavin, Daniel P.
Hogancamp, Joanna V.
McAdam, Amy C.
Malespin, Charles A.
Martín-Torres, F. J.
Ming, Douglas W.
Morris, Richard V.
Prats, Benny
Raulin, François
Rodriguez Manfredi, Jose Antonio
Szopa, Cyril
Zorzano, María Paz
Mahaffy, P.R.
Atreya, Sushil
Trainer, Melissa G.
Vasavada, Ashwin R.
spellingShingle Navarro-González, Rafael
Navarro, Karina F.
Coll, Patrice
McKay, Christopher P.
Stern, Jennifer C.
Sutter, Brad
Douglas Archer Jr, P.
Cabane, Michel
Conrad, Pamela G.
Eigenbrode, Jennifer L.
Franz, Heather B.
Freissinet, Caroline
Glavin, Daniel P.
Hogancamp, Joanna V.
McAdam, Amy C.
Malespin, Charles A.
Martín-Torres, F. J.
Ming, Douglas W.
Morris, Richard V.
Prats, Benny
Raulin, François
Rodriguez Manfredi, Jose Antonio
Szopa, Cyril
Zorzano, María Paz
Mahaffy, P.R.
Atreya, Sushil
Trainer, Melissa G.
Vasavada, Ashwin R.
Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory
author_facet Navarro-González, Rafael
Navarro, Karina F.
Coll, Patrice
McKay, Christopher P.
Stern, Jennifer C.
Sutter, Brad
Douglas Archer Jr, P.
Cabane, Michel
Conrad, Pamela G.
Eigenbrode, Jennifer L.
Franz, Heather B.
Freissinet, Caroline
Glavin, Daniel P.
Hogancamp, Joanna V.
McAdam, Amy C.
Malespin, Charles A.
Martín-Torres, F. J.
Ming, Douglas W.
Morris, Richard V.
Prats, Benny
Raulin, François
Rodriguez Manfredi, Jose Antonio
Szopa, Cyril
Zorzano, María Paz
Mahaffy, P.R.
Atreya, Sushil
Trainer, Melissa G.
Vasavada, Ashwin R.
author_sort Navarro-González, Rafael
title Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory
title_short Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory
title_full Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory
title_fullStr Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory
title_full_unstemmed Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory
title_sort abiotic input of fixed nitrogen by bolide impacts to gale crater during the hesperian: insights from the mars science laboratory
publisher American Geophysical Union
publishDate 2019
url http://hdl.handle.net/10261/203453
https://doi.org/10.1029/2018JE005852
https://doi.org/10.13039/501100005739
https://doi.org/10.13039/501100003141
long_lat ENVELOPE(-77.196,-77.196,61.475,61.475)
ENVELOPE(-114.336,-114.336,62.367,62.367)
geographic Papiit
Yellowknife
Yellowknife Bay
geographic_facet Papiit
Yellowknife
Yellowknife Bay
genre Yellowknife
genre_facet Yellowknife
op_relation Publisher's version
http://dx.doi.org/10.1029/2018JE005852

doi:10.1029/2018JE005852
issn: 2169-9100
Journal of Geophysical Research - Part E - Planets 124: 94-13 (2019)
http://hdl.handle.net/10261/203453
http://dx.doi.org/10.13039/501100005739
http://dx.doi.org/10.13039/501100003141
op_rights open
op_doi https://doi.org/10.1029/2018JE00585210.13039/50110000573910.13039/501100003141
_version_ 1790609341855825920