Antarctic zooplankton metabolism: carbon requirements and ammonium excretion of salps and crustacean zooplankton in the vicinity of the Bransfield strait during January 1994

13 pages, 6 figures, 3 tables [EN] Metabolic rates (oxygen consumption and ammonia excretion) of zooplankton were determined during the austral summer (January 1994), in the eastern Bransfield Strait. The study area comprised four distinct hydrographic zones: the ice edge on the western Weddell Sea,...

Full description

Bibliographic Details
Published in:Journal of Marine Systems
Main Authors: Alcaraz, Miquel, Saiz, Enric, Fernández, José A., Trepat, Isabel, Figueiras, F. G., Calbet, Albert, Bautista, B.
Other Authors: Ministerio de Educación y Ciencia (España), Comisión Interministerial de Ciencia y Tecnología, CICYT (España)
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier 1998
Subjects:
Online Access:http://hdl.handle.net/10261/180947
https://doi.org/10.1016/S0924-7963(98)00048-7
https://doi.org/10.13039/501100007273
Description
Summary:13 pages, 6 figures, 3 tables [EN] Metabolic rates (oxygen consumption and ammonia excretion) of zooplankton were determined during the austral summer (January 1994), in the eastern Bransfield Strait. The study area comprised four distinct hydrographic zones: the ice edge on the western Weddell Sea, the waters of Weddell Sea origin, the southern part of the Weddell–Scotia Confluence, and the waters of Bellingshausen origin. The objectives were to estimate the fraction of primary production accounted for by the metabolism of salps and crustacean zooplankton, as well as the contribution of their excretion to the nitrogen demand of phytoplankton. Biomass-specific respiration and excretion rates of zooplankton were measured simultaneously by incubation methods at in situ temperatures. Zooplankton biomass was measured as organic C on aliquots of samples taken between 0 and 200 m. Primary production was measured by incorporation, using photosynthesis–irradiance relationships. Primary production ranged from 179 to 1612 mg C m−2 day−1. Salps were the most abundant zooplankton group, located mainly in the northern part of the study area, where they excluded other zooplankters. Their biomass ranged from 115 to 2930 mg C m−2 (0–200 m). On average, their metabolic carbon requirements represented about 5% of primary production per day, and their excretion of ammonia contributed 10% of daily phytoplankton nitrogen demand. Crustacean zooplankton were of minor importance in the study area, except at the ice edge and areas of recently melted ice. Their biomass ranged from 14.5 to 494 mg C m−2 and they required on average 0.9% of daily primary production, while ammonia excretion accounted for around 0.4% of the phytoplankton nitrogen demand. During this cruise, salps were the most important zooplankton group from the point of view of the transfer of biogenic carbon and nitrogen recycling. However, the control exerted by zooplankton on primary producers was overall modest, and most of the phytoplankton carbon probably sedimented ...