Biomineral reactivity: the kinetics of the replacement reaction of biological aragonite to apatite

We present results of bioaragonite to apatite conversion in bivalve, coral and cuttlebone skeletons, biological hard materials distinguished by specific microstructures, skeletal densities, original porosities and biopolymer contents. The most profound conversion occurs in the cuttlebone of the ceph...

Full description

Bibliographic Details
Published in:Minerals
Main Authors: Greiner, Martina, Fernández Díaz, Lurdes, Griesshaber, Erika, Zenkert, Moritz N., Yin, Xiaofei, Ziegler, Andreas, Veintemillas-Verdaguer, S., Schmahl, Wolfgang W.
Other Authors: Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), German Research Foundation
Format: Article in Journal/Newspaper
Language:unknown
Published: Multidisciplinary Digital Publishing Institute 2018
Subjects:
Online Access:http://hdl.handle.net/10261/169018
https://doi.org/10.3390/min8080315
https://doi.org/10.13039/501100003329
https://doi.org/10.13039/501100001659
https://doi.org/10.13039/501100011033
id ftcsic:oai:digital.csic.es:10261/169018
record_format openpolar
spelling ftcsic:oai:digital.csic.es:10261/169018 2024-02-11T10:01:51+01:00 Biomineral reactivity: the kinetics of the replacement reaction of biological aragonite to apatite Greiner, Martina Fernández Díaz, Lurdes Griesshaber, Erika Zenkert, Moritz N. Yin, Xiaofei Ziegler, Andreas Veintemillas-Verdaguer, S. Schmahl, Wolfgang W. Agencia Estatal de Investigación (España) Ministerio de Ciencia, Innovación y Universidades (España) Ministerio de Economía y Competitividad (España) German Research Foundation 2018-07-26 http://hdl.handle.net/10261/169018 https://doi.org/10.3390/min8080315 https://doi.org/10.13039/501100003329 https://doi.org/10.13039/501100001659 https://doi.org/10.13039/501100011033 unknown Multidisciplinary Digital Publishing Institute #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2016-77138-C2-1-P MAT2017-88148-R/AEI/10.13039/501100011033 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/MAT2017-88148-R Publisher's version https://doi.org/10.3390/min8080315 Sí Minerals 8(8): 315 (2018) http://hdl.handle.net/10261/169018 doi:10.3390/min8080315 2075-163X http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100001659 http://dx.doi.org/10.13039/501100011033 open Bioaragonite Apatite Microstructure Dissolution-reprecipitation Mineral replacement artículo http://purl.org/coar/resource_type/c_6501 2018 ftcsic https://doi.org/10.3390/min808031510.13039/50110000332910.13039/50110000165910.13039/501100011033 2024-01-16T10:32:31Z We present results of bioaragonite to apatite conversion in bivalve, coral and cuttlebone skeletons, biological hard materials distinguished by specific microstructures, skeletal densities, original porosities and biopolymer contents. The most profound conversion occurs in the cuttlebone of the cephalopod Sepia officinalis, the least effect is observed for the nacreous shell portion of the bivalve Hyriopsis cumingii. The shell of the bivalve Arctica islandica consists of cross-lamellar aragonite, is dense at its innermost and porous at the seaward pointing shell layers. Increased porosity facilitates infiltration of the reaction fluid and renders large surface areas for the dissolution of aragonite and conversion to apatite. Skeletal microstructures of the coral Porites sp. and prismatic H. cumingii allow considerable conversion to apatite. Even though the surface area in Porites sp. is significantly larger in comparison to that of prismatic H. cumingii, the coral skeleton consists of clusters of dense, acicular aragonite. Conversion in the latter is sluggish at first as most apatite precipitates only onto its surface area. However, the process is accelerated when, in addition, fluids enter the hard tissue at centers of calcification. The prismatic shell portion of H. cumingii is readily transformed to apatite as we find here an increased porosity between prisms as well as within the membranes encasing the prisms. In conclusion, we observe distinct differences in bioaragonite to apatite conversion rates and kinetics depending on the feasibility of the reaction fluid to access aragonite crystallites. The latter is dependent on the content of biopolymers within the hard tissue, their feasibility to be decomposed, the extent of newly formed mineral surface area and the specific biogenic ultra- and microstructures. This research was partially funded by projects CGL2016-77138-C2-1-P (MECC-Spain) and MAT2017-88148-R (MECC-Spain) (S.V.V. and L.F.-D.). M.G. is supported by the Deutsche Forschungsgemeinschaft, DFG ... Article in Journal/Newspaper Arctica islandica Digital.CSIC (Spanish National Research Council) Minerals 8 8 315
institution Open Polar
collection Digital.CSIC (Spanish National Research Council)
op_collection_id ftcsic
language unknown
topic Bioaragonite
Apatite
Microstructure
Dissolution-reprecipitation
Mineral replacement
spellingShingle Bioaragonite
Apatite
Microstructure
Dissolution-reprecipitation
Mineral replacement
Greiner, Martina
Fernández Díaz, Lurdes
Griesshaber, Erika
Zenkert, Moritz N.
Yin, Xiaofei
Ziegler, Andreas
Veintemillas-Verdaguer, S.
Schmahl, Wolfgang W.
Biomineral reactivity: the kinetics of the replacement reaction of biological aragonite to apatite
topic_facet Bioaragonite
Apatite
Microstructure
Dissolution-reprecipitation
Mineral replacement
description We present results of bioaragonite to apatite conversion in bivalve, coral and cuttlebone skeletons, biological hard materials distinguished by specific microstructures, skeletal densities, original porosities and biopolymer contents. The most profound conversion occurs in the cuttlebone of the cephalopod Sepia officinalis, the least effect is observed for the nacreous shell portion of the bivalve Hyriopsis cumingii. The shell of the bivalve Arctica islandica consists of cross-lamellar aragonite, is dense at its innermost and porous at the seaward pointing shell layers. Increased porosity facilitates infiltration of the reaction fluid and renders large surface areas for the dissolution of aragonite and conversion to apatite. Skeletal microstructures of the coral Porites sp. and prismatic H. cumingii allow considerable conversion to apatite. Even though the surface area in Porites sp. is significantly larger in comparison to that of prismatic H. cumingii, the coral skeleton consists of clusters of dense, acicular aragonite. Conversion in the latter is sluggish at first as most apatite precipitates only onto its surface area. However, the process is accelerated when, in addition, fluids enter the hard tissue at centers of calcification. The prismatic shell portion of H. cumingii is readily transformed to apatite as we find here an increased porosity between prisms as well as within the membranes encasing the prisms. In conclusion, we observe distinct differences in bioaragonite to apatite conversion rates and kinetics depending on the feasibility of the reaction fluid to access aragonite crystallites. The latter is dependent on the content of biopolymers within the hard tissue, their feasibility to be decomposed, the extent of newly formed mineral surface area and the specific biogenic ultra- and microstructures. This research was partially funded by projects CGL2016-77138-C2-1-P (MECC-Spain) and MAT2017-88148-R (MECC-Spain) (S.V.V. and L.F.-D.). M.G. is supported by the Deutsche Forschungsgemeinschaft, DFG ...
author2 Agencia Estatal de Investigación (España)
Ministerio de Ciencia, Innovación y Universidades (España)
Ministerio de Economía y Competitividad (España)
German Research Foundation
format Article in Journal/Newspaper
author Greiner, Martina
Fernández Díaz, Lurdes
Griesshaber, Erika
Zenkert, Moritz N.
Yin, Xiaofei
Ziegler, Andreas
Veintemillas-Verdaguer, S.
Schmahl, Wolfgang W.
author_facet Greiner, Martina
Fernández Díaz, Lurdes
Griesshaber, Erika
Zenkert, Moritz N.
Yin, Xiaofei
Ziegler, Andreas
Veintemillas-Verdaguer, S.
Schmahl, Wolfgang W.
author_sort Greiner, Martina
title Biomineral reactivity: the kinetics of the replacement reaction of biological aragonite to apatite
title_short Biomineral reactivity: the kinetics of the replacement reaction of biological aragonite to apatite
title_full Biomineral reactivity: the kinetics of the replacement reaction of biological aragonite to apatite
title_fullStr Biomineral reactivity: the kinetics of the replacement reaction of biological aragonite to apatite
title_full_unstemmed Biomineral reactivity: the kinetics of the replacement reaction of biological aragonite to apatite
title_sort biomineral reactivity: the kinetics of the replacement reaction of biological aragonite to apatite
publisher Multidisciplinary Digital Publishing Institute
publishDate 2018
url http://hdl.handle.net/10261/169018
https://doi.org/10.3390/min8080315
https://doi.org/10.13039/501100003329
https://doi.org/10.13039/501100001659
https://doi.org/10.13039/501100011033
genre Arctica islandica
genre_facet Arctica islandica
op_relation #PLACEHOLDER_PARENT_METADATA_VALUE#
info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2016-77138-C2-1-P
MAT2017-88148-R/AEI/10.13039/501100011033
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/MAT2017-88148-R
Publisher's version
https://doi.org/10.3390/min8080315

Minerals 8(8): 315 (2018)
http://hdl.handle.net/10261/169018
doi:10.3390/min8080315
2075-163X
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100011033
op_rights open
op_doi https://doi.org/10.3390/min808031510.13039/50110000332910.13039/50110000165910.13039/501100011033
container_title Minerals
container_volume 8
container_issue 8
container_start_page 315
_version_ 1790597664854769664