Modulation of the Catalytic Properties of Lipase B from Candida antarctica by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering

The immobilization of biocatalysts on magnetic nanomaterial surface is a very attractive alternative to achieve enzyme nanoderivatives with highly improved properties. The combination between the careful tailoring of nanocarrier surfaces and the site-specific chemical modification of biomacromolecul...

Full description

Bibliographic Details
Published in:Polymers
Main Authors: Viñambres, Mario, Filice, Marco, Marciello, Marzia
Other Authors: Ministerio de Economía y Competitividad (España), European Commission, Comunidad de Madrid, Universidad Complutense de Madrid, Consejo Superior de Investigaciones Científicas (España), Fundación Severo Ochoa, Fundación Pro CNIC
Format: Article in Journal/Newspaper
Language:unknown
Published: Multidisciplinary Digital Publishing Institute 2018
Subjects:
Online Access:http://hdl.handle.net/10261/166925
https://doi.org/10.3390/polym10060615
https://doi.org/10.13039/501100003329
https://doi.org/10.13039/501100000780
https://doi.org/10.13039/501100002911
https://doi.org/10.13039/501100003339
https://doi.org/10.13039/100012818
id ftcsic:oai:digital.csic.es:10261/166925
record_format openpolar
spelling ftcsic:oai:digital.csic.es:10261/166925 2024-02-11T09:58:29+01:00 Modulation of the Catalytic Properties of Lipase B from Candida antarctica by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering Viñambres, Mario Filice, Marco Marciello, Marzia Ministerio de Economía y Competitividad (España) European Commission Comunidad de Madrid Universidad Complutense de Madrid Consejo Superior de Investigaciones Científicas (España) Fundación Severo Ochoa Fundación Pro CNIC 2018-06-05 http://hdl.handle.net/10261/166925 https://doi.org/10.3390/polym10060615 https://doi.org/10.13039/501100003329 https://doi.org/10.13039/501100000780 https://doi.org/10.13039/501100002911 https://doi.org/10.13039/501100003339 https://doi.org/10.13039/100012818 unknown Multidisciplinary Digital Publishing Institute #PLACEHOLDER_PARENT_METADATA_VALUE# 2017-T1/BIO-4992 info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2014-59118-JIN Publisher's version http://dx.doi.org/10.3390/polym10060615 doi:10.3390/polym10060615 Polymers 10 (6): 615 (2018) http://hdl.handle.net/10261/166925 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100002911 http://dx.doi.org/10.13039/501100003339 http://dx.doi.org/10.13039/100012818 30966649 open artículo http://purl.org/coar/resource_type/c_6501 2018 ftcsic https://doi.org/10.3390/polym1006061510.13039/50110000332910.13039/50110000078010.13039/50110000291110.13039/50110000333910.13039/100012818 2024-01-16T10:31:28Z The immobilization of biocatalysts on magnetic nanomaterial surface is a very attractive alternative to achieve enzyme nanoderivatives with highly improved properties. The combination between the careful tailoring of nanocarrier surfaces and the site-specific chemical modification of biomacromolecules is a crucial parameter to finely modulate the catalytic behavior of the biocatalyst. In this work, a useful strategy to immobilize chemically aminated lipase B from Candida antarctica on magnetic iron oxide nanoparticles (IONPs) by covalent multipoint attachment or hydrophobic physical adsorption upon previous tailored engineering of nanocarriers with poly-carboxylic groups (citric acid or succinic anhydride, CALB EDA @CA-NPs and CALB EDA @SA-NPs respectively) or hydrophobic layer (oleic acid, CALB EDA @OA-NPs) is described. After full characterization, the nanocatalysts have been assessed in the enantioselective kinetic resolution of racemic methyl mandelate. Depending on the immobilization strategy, each enzymatic nanoderivative permitted to selectively improve a specific property of the biocatalyst. In general, all the immobilization protocols permitted loading from good to high lipase amount (149 < immobilized lipase < 234 mg/g Fe ). The hydrophobic CALB EDA @OA-NPs was the most active nanocatalyst, whereas the covalent CALB EDA @CA-NPs and CALB EDA @SA-NPs were revealed to be the most thermostable and also the most enantioselective ones in the kinetic resolution reaction (almost 90% ee R-enantiomer). A strategy to maintain all these properties in long-time storage (up to 1 month) by freeze-drying was also optimized. Therefore, the nanocarrier surface engineering is demonstrated to be a key-parameter in the design and preparation of lipase libraries with enhanced catalytic properties. The CNIC is supported by Spanish Ministry for Economy and Competitiveness (MEyC) and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505). M.F. would like to thank MEyC for the research grant ... Article in Journal/Newspaper Antarc* Antarctica Digital.CSIC (Spanish National Research Council) Polymers 10 6 615
institution Open Polar
collection Digital.CSIC (Spanish National Research Council)
op_collection_id ftcsic
language unknown
description The immobilization of biocatalysts on magnetic nanomaterial surface is a very attractive alternative to achieve enzyme nanoderivatives with highly improved properties. The combination between the careful tailoring of nanocarrier surfaces and the site-specific chemical modification of biomacromolecules is a crucial parameter to finely modulate the catalytic behavior of the biocatalyst. In this work, a useful strategy to immobilize chemically aminated lipase B from Candida antarctica on magnetic iron oxide nanoparticles (IONPs) by covalent multipoint attachment or hydrophobic physical adsorption upon previous tailored engineering of nanocarriers with poly-carboxylic groups (citric acid or succinic anhydride, CALB EDA @CA-NPs and CALB EDA @SA-NPs respectively) or hydrophobic layer (oleic acid, CALB EDA @OA-NPs) is described. After full characterization, the nanocatalysts have been assessed in the enantioselective kinetic resolution of racemic methyl mandelate. Depending on the immobilization strategy, each enzymatic nanoderivative permitted to selectively improve a specific property of the biocatalyst. In general, all the immobilization protocols permitted loading from good to high lipase amount (149 < immobilized lipase < 234 mg/g Fe ). The hydrophobic CALB EDA @OA-NPs was the most active nanocatalyst, whereas the covalent CALB EDA @CA-NPs and CALB EDA @SA-NPs were revealed to be the most thermostable and also the most enantioselective ones in the kinetic resolution reaction (almost 90% ee R-enantiomer). A strategy to maintain all these properties in long-time storage (up to 1 month) by freeze-drying was also optimized. Therefore, the nanocarrier surface engineering is demonstrated to be a key-parameter in the design and preparation of lipase libraries with enhanced catalytic properties. The CNIC is supported by Spanish Ministry for Economy and Competitiveness (MEyC) and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505). M.F. would like to thank MEyC for the research grant ...
author2 Ministerio de Economía y Competitividad (España)
European Commission
Comunidad de Madrid
Universidad Complutense de Madrid
Consejo Superior de Investigaciones Científicas (España)
Fundación Severo Ochoa
Fundación Pro CNIC
format Article in Journal/Newspaper
author Viñambres, Mario
Filice, Marco
Marciello, Marzia
spellingShingle Viñambres, Mario
Filice, Marco
Marciello, Marzia
Modulation of the Catalytic Properties of Lipase B from Candida antarctica by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering
author_facet Viñambres, Mario
Filice, Marco
Marciello, Marzia
author_sort Viñambres, Mario
title Modulation of the Catalytic Properties of Lipase B from Candida antarctica by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering
title_short Modulation of the Catalytic Properties of Lipase B from Candida antarctica by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering
title_full Modulation of the Catalytic Properties of Lipase B from Candida antarctica by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering
title_fullStr Modulation of the Catalytic Properties of Lipase B from Candida antarctica by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering
title_full_unstemmed Modulation of the Catalytic Properties of Lipase B from Candida antarctica by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering
title_sort modulation of the catalytic properties of lipase b from candida antarctica by immobilization on tailor-made magnetic iron oxide nanoparticles: the key role of nanocarrier surface engineering
publisher Multidisciplinary Digital Publishing Institute
publishDate 2018
url http://hdl.handle.net/10261/166925
https://doi.org/10.3390/polym10060615
https://doi.org/10.13039/501100003329
https://doi.org/10.13039/501100000780
https://doi.org/10.13039/501100002911
https://doi.org/10.13039/501100003339
https://doi.org/10.13039/100012818
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation #PLACEHOLDER_PARENT_METADATA_VALUE#
2017-T1/BIO-4992
info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2014-59118-JIN
Publisher's version
http://dx.doi.org/10.3390/polym10060615
doi:10.3390/polym10060615
Polymers 10 (6): 615 (2018)
http://hdl.handle.net/10261/166925
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100002911
http://dx.doi.org/10.13039/501100003339
http://dx.doi.org/10.13039/100012818
30966649
op_rights open
op_doi https://doi.org/10.3390/polym1006061510.13039/50110000332910.13039/50110000078010.13039/50110000291110.13039/50110000333910.13039/100012818
container_title Polymers
container_volume 10
container_issue 6
container_start_page 615
_version_ 1790594146429304832