Improving Surface Melt Estimation over Antarctica Using Deep Learning: A Proof-of-Concept over the Larsen Ice Shelf

Accurately estimating surface melt volume of the Antarctic Ice Sheet is challenging, and has hitherto relied on climate modelling, or on observations from satellite remote sensing. Each of these methods has its limitations, especially in regions with high surface melt. This study aims to demonstrate...

Full description

Bibliographic Details
Main Authors: Hu, Zhongyang, Kuipers Munneke, Peter, Lhermitte, Stef, Izeboud, Maaike, Broeke, Michiel
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/tc-2021-102
https://tc.copernicus.org/preprints/tc-2021-102/
id ftcopernicus:oai:publications.copernicus.org:tcd93737
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:tcd93737 2023-05-15T13:31:40+02:00 Improving Surface Melt Estimation over Antarctica Using Deep Learning: A Proof-of-Concept over the Larsen Ice Shelf Hu, Zhongyang Kuipers Munneke, Peter Lhermitte, Stef Izeboud, Maaike Broeke, Michiel 2021-04-15 application/pdf https://doi.org/10.5194/tc-2021-102 https://tc.copernicus.org/preprints/tc-2021-102/ eng eng doi:10.5194/tc-2021-102 https://tc.copernicus.org/preprints/tc-2021-102/ eISSN: 1994-0424 Text 2021 ftcopernicus https://doi.org/10.5194/tc-2021-102 2021-04-19T16:22:14Z Accurately estimating surface melt volume of the Antarctic Ice Sheet is challenging, and has hitherto relied on climate modelling, or on observations from satellite remote sensing. Each of these methods has its limitations, especially in regions with high surface melt. This study aims to demonstrate the potential of improving surface melt simulations by deploying a deep learning model. A deep-learning-based framework has been developed to correct surface melt from the regional atmospheric climate model version 2.3p2 (RACMO2), using meteorological observations from automatic weather stations (AWSs), and surface albedo from satellite imagery. The framework includes three steps: (1) training a deep multilayer perceptron (MLP) model using AWS observations; (2) correcting moderate resolution imaging spectroradiometer (MODIS) albedo observations, and (3) using these two to correct the RACMO2 surface melt simulations. Using observations from three AWSs at the Larsen B and C Ice Shelves, Antarctica, cross-validation shows a high accuracy (root mean square error = 0.95 mm w.e. per day, mean absolute error = 0.42 mm w.e. per day, and coefficient of determination = 0.95). Moreover, the deep MLP model outperforms conventional machine learning models (e.g., random forest regression, XGBoost) and a shallow MLP model. When applying the trained deep MLP model over the entire Larsen Ice Shelf, the resulting, corrected RACMO2 surface melt shows a better correlation with the AWS observations for two out of three AWSs. However, for one location (AWS 18) the deep MLP model does not show improved agreement with AWS observations, likely due to the heterogeneous drivers of melt within the corresponding coarse resolution model pixels. Our study demonstrates the opportunity to improve surface melt simulations using deep learning combined with satellite albedo observations. On the other hand, more work is required to refine the method, especially for complicated and heterogeneous terrains. Text Antarc* Antarctic Antarctica Ice Sheet Ice Shelf Ice Shelves Larsen Ice Shelf Copernicus Publications: E-Journals Antarctic Larsen Ice Shelf ENVELOPE(-62.500,-62.500,-67.500,-67.500) The Antarctic
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Accurately estimating surface melt volume of the Antarctic Ice Sheet is challenging, and has hitherto relied on climate modelling, or on observations from satellite remote sensing. Each of these methods has its limitations, especially in regions with high surface melt. This study aims to demonstrate the potential of improving surface melt simulations by deploying a deep learning model. A deep-learning-based framework has been developed to correct surface melt from the regional atmospheric climate model version 2.3p2 (RACMO2), using meteorological observations from automatic weather stations (AWSs), and surface albedo from satellite imagery. The framework includes three steps: (1) training a deep multilayer perceptron (MLP) model using AWS observations; (2) correcting moderate resolution imaging spectroradiometer (MODIS) albedo observations, and (3) using these two to correct the RACMO2 surface melt simulations. Using observations from three AWSs at the Larsen B and C Ice Shelves, Antarctica, cross-validation shows a high accuracy (root mean square error = 0.95 mm w.e. per day, mean absolute error = 0.42 mm w.e. per day, and coefficient of determination = 0.95). Moreover, the deep MLP model outperforms conventional machine learning models (e.g., random forest regression, XGBoost) and a shallow MLP model. When applying the trained deep MLP model over the entire Larsen Ice Shelf, the resulting, corrected RACMO2 surface melt shows a better correlation with the AWS observations for two out of three AWSs. However, for one location (AWS 18) the deep MLP model does not show improved agreement with AWS observations, likely due to the heterogeneous drivers of melt within the corresponding coarse resolution model pixels. Our study demonstrates the opportunity to improve surface melt simulations using deep learning combined with satellite albedo observations. On the other hand, more work is required to refine the method, especially for complicated and heterogeneous terrains.
format Text
author Hu, Zhongyang
Kuipers Munneke, Peter
Lhermitte, Stef
Izeboud, Maaike
Broeke, Michiel
spellingShingle Hu, Zhongyang
Kuipers Munneke, Peter
Lhermitte, Stef
Izeboud, Maaike
Broeke, Michiel
Improving Surface Melt Estimation over Antarctica Using Deep Learning: A Proof-of-Concept over the Larsen Ice Shelf
author_facet Hu, Zhongyang
Kuipers Munneke, Peter
Lhermitte, Stef
Izeboud, Maaike
Broeke, Michiel
author_sort Hu, Zhongyang
title Improving Surface Melt Estimation over Antarctica Using Deep Learning: A Proof-of-Concept over the Larsen Ice Shelf
title_short Improving Surface Melt Estimation over Antarctica Using Deep Learning: A Proof-of-Concept over the Larsen Ice Shelf
title_full Improving Surface Melt Estimation over Antarctica Using Deep Learning: A Proof-of-Concept over the Larsen Ice Shelf
title_fullStr Improving Surface Melt Estimation over Antarctica Using Deep Learning: A Proof-of-Concept over the Larsen Ice Shelf
title_full_unstemmed Improving Surface Melt Estimation over Antarctica Using Deep Learning: A Proof-of-Concept over the Larsen Ice Shelf
title_sort improving surface melt estimation over antarctica using deep learning: a proof-of-concept over the larsen ice shelf
publishDate 2021
url https://doi.org/10.5194/tc-2021-102
https://tc.copernicus.org/preprints/tc-2021-102/
long_lat ENVELOPE(-62.500,-62.500,-67.500,-67.500)
geographic Antarctic
Larsen Ice Shelf
The Antarctic
geographic_facet Antarctic
Larsen Ice Shelf
The Antarctic
genre Antarc*
Antarctic
Antarctica
Ice Sheet
Ice Shelf
Ice Shelves
Larsen Ice Shelf
genre_facet Antarc*
Antarctic
Antarctica
Ice Sheet
Ice Shelf
Ice Shelves
Larsen Ice Shelf
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-2021-102
https://tc.copernicus.org/preprints/tc-2021-102/
op_doi https://doi.org/10.5194/tc-2021-102
_version_ 1766020095699582976