Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability

Landfast sea ice (fast ice) is an important though poorly understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere–ocean–ice-sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline ana...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Fraser, Alexander D., Massom, Robert A., Handcock, Mark S., Reid, Phillip, Ohshima, Kay I., Raphael, Marilyn N., Cartwright, Jessica, Klekociuk, Andrew R., Wang, Zhaohui, Porter-Smith, Richard
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/tc-15-5061-2021
https://tc.copernicus.org/articles/15/5061/2021/
id ftcopernicus:oai:publications.copernicus.org:tc94076
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Landfast sea ice (fast ice) is an important though poorly understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere–ocean–ice-sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarctic fast-ice distribution (including its relationship to bathymetry), based on a new high-resolution satellite-derived time series for the period 2000 to 2018. This reveals (a) an overall trend of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">882</mn><mo>±</mo><mn mathvariant="normal">824</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="453c88ebba731e287b80a2e1ca09d1f2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00001.svg" width="58pt" height="10pt" src="tc-15-5061-2021-ie00001.png"/></svg:svg> km 2 yr −1 ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.19</mn><mo>±</mo><mn mathvariant="normal">0.18</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="ae39578bd83f0d4df3b4603b31a77636"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00002.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00002.png"/></svg:svg> % yr −1 ) and (b) eight distinct regions in terms of fast-ice coverage and modes of formation. Of these, four exhibit positive trends over the 18-year period and four negative. Positive trends are seen in East Antarctica and in the Bellingshausen Sea, with this region claiming the largest positive trend of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">1198</mn><mo>±</mo><mn mathvariant="normal">359</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="82580160fd0734bcdcbcf8c7aa9c79ee"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00003.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00003.png"/></svg:svg> km 2 yr −1 ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">1.10</mn><mo>±</mo><mn mathvariant="normal">0.35</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b0635188d1aab802b0a92816c8f515e7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00004.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00004.png"/></svg:svg> % yr −1 ). The four negative trends predominantly occur in West Antarctica, with the largest negative trend of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1206</mn><mo>±</mo><mn mathvariant="normal">277</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="da2c2b434b71c0185874a7ded8fc6352"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00005.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00005.png"/></svg:svg> km 2 yr −1 ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.78</mn><mo>±</mo><mn mathvariant="normal">0.41</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="a811b84b1fd9eff69f98809409a08608"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00006.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00006.png"/></svg:svg> % yr −1 ) occurring in the Victoria and Oates Land region in the western Ross Sea. All trends are significant. This new baseline analysis represents a significant advance in our knowledge of the current state of both the global cryosphere and the complex Antarctic coastal system, which are vulnerable to climate variability and change. It will also inform a wide range of other studies.
format Text
author Fraser, Alexander D.
Massom, Robert A.
Handcock, Mark S.
Reid, Phillip
Ohshima, Kay I.
Raphael, Marilyn N.
Cartwright, Jessica
Klekociuk, Andrew R.
Wang, Zhaohui
Porter-Smith, Richard
spellingShingle Fraser, Alexander D.
Massom, Robert A.
Handcock, Mark S.
Reid, Phillip
Ohshima, Kay I.
Raphael, Marilyn N.
Cartwright, Jessica
Klekociuk, Andrew R.
Wang, Zhaohui
Porter-Smith, Richard
Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
author_facet Fraser, Alexander D.
Massom, Robert A.
Handcock, Mark S.
Reid, Phillip
Ohshima, Kay I.
Raphael, Marilyn N.
Cartwright, Jessica
Klekociuk, Andrew R.
Wang, Zhaohui
Porter-Smith, Richard
author_sort Fraser, Alexander D.
title Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
title_short Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
title_full Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
title_fullStr Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
title_full_unstemmed Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
title_sort eighteen-year record of circum-antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
publishDate 2021
url https://doi.org/10.5194/tc-15-5061-2021
https://tc.copernicus.org/articles/15/5061/2021/
long_lat ENVELOPE(158.000,158.000,-70.000,-70.000)
geographic Antarctic
Bellingshausen Sea
East Antarctica
Oates Land
Ross Sea
The Antarctic
West Antarctica
geographic_facet Antarctic
Bellingshausen Sea
East Antarctica
Oates Land
Ross Sea
The Antarctic
West Antarctica
genre Antarc*
Antarctic
Antarctica
Bellingshausen Sea
East Antarctica
Ice Sheet
Oates Land
Ross Sea
Sea ice
West Antarctica
genre_facet Antarc*
Antarctic
Antarctica
Bellingshausen Sea
East Antarctica
Ice Sheet
Oates Land
Ross Sea
Sea ice
West Antarctica
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-15-5061-2021
https://tc.copernicus.org/articles/15/5061/2021/
op_doi https://doi.org/10.5194/tc-15-5061-2021
container_title The Cryosphere
container_volume 15
container_issue 11
container_start_page 5061
op_container_end_page 5077
_version_ 1766272471481188352
spelling ftcopernicus:oai:publications.copernicus.org:tc94076 2023-05-15T14:02:17+02:00 Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability Fraser, Alexander D. Massom, Robert A. Handcock, Mark S. Reid, Phillip Ohshima, Kay I. Raphael, Marilyn N. Cartwright, Jessica Klekociuk, Andrew R. Wang, Zhaohui Porter-Smith, Richard 2021-11-03 application/pdf https://doi.org/10.5194/tc-15-5061-2021 https://tc.copernicus.org/articles/15/5061/2021/ eng eng doi:10.5194/tc-15-5061-2021 https://tc.copernicus.org/articles/15/5061/2021/ eISSN: 1994-0424 Text 2021 ftcopernicus https://doi.org/10.5194/tc-15-5061-2021 2021-11-08T17:22:29Z Landfast sea ice (fast ice) is an important though poorly understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere–ocean–ice-sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarctic fast-ice distribution (including its relationship to bathymetry), based on a new high-resolution satellite-derived time series for the period 2000 to 2018. This reveals (a) an overall trend of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">882</mn><mo>±</mo><mn mathvariant="normal">824</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="453c88ebba731e287b80a2e1ca09d1f2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00001.svg" width="58pt" height="10pt" src="tc-15-5061-2021-ie00001.png"/></svg:svg> km 2 yr −1 ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.19</mn><mo>±</mo><mn mathvariant="normal">0.18</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="ae39578bd83f0d4df3b4603b31a77636"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00002.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00002.png"/></svg:svg> % yr −1 ) and (b) eight distinct regions in terms of fast-ice coverage and modes of formation. Of these, four exhibit positive trends over the 18-year period and four negative. Positive trends are seen in East Antarctica and in the Bellingshausen Sea, with this region claiming the largest positive trend of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">1198</mn><mo>±</mo><mn mathvariant="normal">359</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="82580160fd0734bcdcbcf8c7aa9c79ee"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00003.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00003.png"/></svg:svg> km 2 yr −1 ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">1.10</mn><mo>±</mo><mn mathvariant="normal">0.35</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b0635188d1aab802b0a92816c8f515e7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00004.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00004.png"/></svg:svg> % yr −1 ). The four negative trends predominantly occur in West Antarctica, with the largest negative trend of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1206</mn><mo>±</mo><mn mathvariant="normal">277</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="da2c2b434b71c0185874a7ded8fc6352"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00005.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00005.png"/></svg:svg> km 2 yr −1 ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.78</mn><mo>±</mo><mn mathvariant="normal">0.41</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="a811b84b1fd9eff69f98809409a08608"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00006.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00006.png"/></svg:svg> % yr −1 ) occurring in the Victoria and Oates Land region in the western Ross Sea. All trends are significant. This new baseline analysis represents a significant advance in our knowledge of the current state of both the global cryosphere and the complex Antarctic coastal system, which are vulnerable to climate variability and change. It will also inform a wide range of other studies. Text Antarc* Antarctic Antarctica Bellingshausen Sea East Antarctica Ice Sheet Oates Land Ross Sea Sea ice West Antarctica Copernicus Publications: E-Journals Antarctic Bellingshausen Sea East Antarctica Oates Land ENVELOPE(158.000,158.000,-70.000,-70.000) Ross Sea The Antarctic West Antarctica The Cryosphere 15 11 5061 5077