Arctic sea ice sensitivity to lateral melting representation in a coupled climate model

The melting of sea ice floes from the edges (lateral melting) results in open-water formation and subsequently increases absorption of solar shortwave energy. However, lateral melt plays a small role in the sea ice mass budget in both hemispheres in most climate models. This is likely influenced by...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Smith, Madison M., Holland, Marika, Light, Bonnie
Format: Text
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.5194/tc-16-419-2022
https://tc.copernicus.org/articles/16/419/2022/
id ftcopernicus:oai:publications.copernicus.org:tc93115
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:tc93115 2023-05-15T13:12:05+02:00 Arctic sea ice sensitivity to lateral melting representation in a coupled climate model Smith, Madison M. Holland, Marika Light, Bonnie 2022-02-04 application/pdf https://doi.org/10.5194/tc-16-419-2022 https://tc.copernicus.org/articles/16/419/2022/ eng eng doi:10.5194/tc-16-419-2022 https://tc.copernicus.org/articles/16/419/2022/ eISSN: 1994-0424 Text 2022 ftcopernicus https://doi.org/10.5194/tc-16-419-2022 2022-02-07T17:22:16Z The melting of sea ice floes from the edges (lateral melting) results in open-water formation and subsequently increases absorption of solar shortwave energy. However, lateral melt plays a small role in the sea ice mass budget in both hemispheres in most climate models. This is likely influenced by the simple parameterization of lateral melting in sea ice models that are constrained by limited observations. Here we use a coupled climate model (CESM2.0) to assess the sensitivity of modeled sea ice state to the lateral melt parameterization in preindustrial and 2×CO 2 runs. The runs explore the implications of how lateral melting is parameterized and structural changes in how it is applied. The results show that sea ice is sensitive both to the parameters determining the effective lateral melt rate and the nuances in how lateral melting is applied to the ice pack. Increasing the lateral melt rate is largely compensated for by decreases in the basal melt rate but still results in a significant decrease in sea ice concentration and thickness, particularly in the marginal ice zone. Our analysis suggests that this is tied to the increased efficiency of lateral melting at forming open water during the summer melt season, which drives the majority of the ice–albedo feedback. The more seasonal Southern Hemisphere ice cover undergoes larger relative reductions in sea ice concentration and thickness for the same relative increase in lateral melt rate, likely due to the hemispheric differences in the role of the sea-ice–upper-ocean coupling. Additionally, increasing the lateral melt rate under a 2×CO 2 forcing, where sea ice is thinner, results in a smaller relative change in sea ice mean state but suggests that open-water-formation feedbacks are likely to steepen the decline to ice-free summer conditions. Overall, melt processes are more efficient at forming open water in thinner ice scenarios (as we are likely to see in the future), suggesting the importance of accurately representing thermodynamic evolution. Revisiting model parameterizations of lateral melting with observations will require finding new ways to represent salient physical processes. Text albedo Arctic ice pack Sea ice Copernicus Publications: E-Journals Arctic The Cryosphere 16 2 419 434
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The melting of sea ice floes from the edges (lateral melting) results in open-water formation and subsequently increases absorption of solar shortwave energy. However, lateral melt plays a small role in the sea ice mass budget in both hemispheres in most climate models. This is likely influenced by the simple parameterization of lateral melting in sea ice models that are constrained by limited observations. Here we use a coupled climate model (CESM2.0) to assess the sensitivity of modeled sea ice state to the lateral melt parameterization in preindustrial and 2×CO 2 runs. The runs explore the implications of how lateral melting is parameterized and structural changes in how it is applied. The results show that sea ice is sensitive both to the parameters determining the effective lateral melt rate and the nuances in how lateral melting is applied to the ice pack. Increasing the lateral melt rate is largely compensated for by decreases in the basal melt rate but still results in a significant decrease in sea ice concentration and thickness, particularly in the marginal ice zone. Our analysis suggests that this is tied to the increased efficiency of lateral melting at forming open water during the summer melt season, which drives the majority of the ice–albedo feedback. The more seasonal Southern Hemisphere ice cover undergoes larger relative reductions in sea ice concentration and thickness for the same relative increase in lateral melt rate, likely due to the hemispheric differences in the role of the sea-ice–upper-ocean coupling. Additionally, increasing the lateral melt rate under a 2×CO 2 forcing, where sea ice is thinner, results in a smaller relative change in sea ice mean state but suggests that open-water-formation feedbacks are likely to steepen the decline to ice-free summer conditions. Overall, melt processes are more efficient at forming open water in thinner ice scenarios (as we are likely to see in the future), suggesting the importance of accurately representing thermodynamic evolution. Revisiting model parameterizations of lateral melting with observations will require finding new ways to represent salient physical processes.
format Text
author Smith, Madison M.
Holland, Marika
Light, Bonnie
spellingShingle Smith, Madison M.
Holland, Marika
Light, Bonnie
Arctic sea ice sensitivity to lateral melting representation in a coupled climate model
author_facet Smith, Madison M.
Holland, Marika
Light, Bonnie
author_sort Smith, Madison M.
title Arctic sea ice sensitivity to lateral melting representation in a coupled climate model
title_short Arctic sea ice sensitivity to lateral melting representation in a coupled climate model
title_full Arctic sea ice sensitivity to lateral melting representation in a coupled climate model
title_fullStr Arctic sea ice sensitivity to lateral melting representation in a coupled climate model
title_full_unstemmed Arctic sea ice sensitivity to lateral melting representation in a coupled climate model
title_sort arctic sea ice sensitivity to lateral melting representation in a coupled climate model
publishDate 2022
url https://doi.org/10.5194/tc-16-419-2022
https://tc.copernicus.org/articles/16/419/2022/
geographic Arctic
geographic_facet Arctic
genre albedo
Arctic
ice pack
Sea ice
genre_facet albedo
Arctic
ice pack
Sea ice
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-16-419-2022
https://tc.copernicus.org/articles/16/419/2022/
op_doi https://doi.org/10.5194/tc-16-419-2022
container_title The Cryosphere
container_volume 16
container_issue 2
container_start_page 419
op_container_end_page 434
_version_ 1766250266583105536