Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?

Knowledge of past ice sheet configurations is useful for informing projections of future ice sheet dynamics and for calibrating ice sheet models. The topology of grounding line retreat in the Ross Sea sector of Antarctica has been much debated, but it has generally been assumed that the modern ice s...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Neuhaus, Sarah U., Tulaczyk, Slawek M., Stansell, Nathan D., Coenen, Jason J., Scherer, Reed P., Mikucki, Jill A., Powell, Ross D.
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/tc-15-4655-2021
https://tc.copernicus.org/articles/15/4655/2021/
id ftcopernicus:oai:publications.copernicus.org:tc90428
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Knowledge of past ice sheet configurations is useful for informing projections of future ice sheet dynamics and for calibrating ice sheet models. The topology of grounding line retreat in the Ross Sea sector of Antarctica has been much debated, but it has generally been assumed that the modern ice sheet is as small as it has been for more than 100 000 years (Conway et al., 1999; Lee et al., 2017; Lowry et al., 2019; McKay et al., 2016; Scherer et al., 1998). Recent findings suggest that the West Antarctic Ice Sheet (WAIS) grounding line retreated beyond its current location earlier in the Holocene and subsequently readvanced to reach its modern position (Bradley et al., 2015; Kingslake et al., 2018). Here, we further constrain the post-LGM (Last Glacial Maximum) grounding line retreat and readvance in the Ross Sea sector using a two-phase model of radiocarbon input and decay in subglacial sediments from six sub-ice sampling locations. In addition, we reinterpret high basal temperature gradients, measured previously at three sites in this region (Engelhardt, 2004), which we explain as resulting from recent ice shelf re-grounding accompanying grounding line readvance. At one location – Whillans Subglacial Lake (SLW) – for which a sediment porewater chemistry profile is known, we estimate the grounding line readvance by simulating ionic diffusion. Collectively, our analyses indicate that the grounding line retreated over SLW <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">4300</mn><mrow><mo>-</mo><mn mathvariant="normal">2500</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">1500</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="a00bd3b1235980ba5027f9213935f3e1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00001.svg" width="50pt" height="17pt" src="tc-15-4655-2021-ie00001.png"/></svg:svg> years ago, and over sites on Whillans Ice Stream (WIS), Kamb Ice Stream (KIS), and Bindschadler Ice Stream (BIS) <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">4700</mn><mrow><mo>-</mo><mn mathvariant="normal">2300</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">1500</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="8ea3cdc752d825e150a50fa096dc14c0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00002.svg" width="50pt" height="17pt" src="tc-15-4655-2021-ie00002.png"/></svg:svg> , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1800</mn><mrow><mo>-</mo><mn mathvariant="normal">700</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">2700</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="f4dbde8f75753f3f5e54f8da3e5f1657"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00003.svg" width="50pt" height="17pt" src="tc-15-4655-2021-ie00003.png"/></svg:svg> , and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1700</mn><mrow><mo>-</mo><mn mathvariant="normal">600</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">2800</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="4986eac78ba7519194de6c544dfb01e1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00004.svg" width="50pt" height="17pt" src="tc-15-4655-2021-ie00004.png"/></svg:svg> years ago, respectively. The grounding line only recently readvanced back over those sites <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1100</mn><mrow><mo>-</mo><mn mathvariant="normal">100</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">200</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="6e12a66362c3f87b893569be042a8ae1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00005.svg" width="45pt" height="17pt" src="tc-15-4655-2021-ie00005.png"/></svg:svg> , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1500</mn><mrow><mo>-</mo><mn mathvariant="normal">200</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">500</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="5c61b1bbcd0a9632b699281702f3688f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00006.svg" width="45pt" height="17pt" src="tc-15-4655-2021-ie00006.png"/></svg:svg> , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1000</mn><mrow><mo>-</mo><mn mathvariant="normal">300</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">200</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="bf23a3a065829c4b9df41001cc16842a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00007.svg" width="45pt" height="17pt" src="tc-15-4655-2021-ie00007.png"/></svg:svg> , and 800±100 years ago for SLW, WIS, KIS, and BIS, respectively. The timing of grounding line retreat coincided with a warm period in the mid-Holocene to late Holocene. Conversely, grounding line readvance is coincident with cooling climate in the last 1000–2000 years. Our estimates for the timing of grounding line retreat and readvance are also consistent with relatively low carbon-to-nitrogen ratios measured in our subglacial sediment samples (suggesting a marine source of organic matter) and with the lack of grounding zone wedges in front of modern grounding lines. Based on these results, we propose that the Siple Coast grounding line motions in the mid-Holocene to late Holocene were primarily driven by relatively modest changes in regional climate, rather than by ice sheet dynamics and glacioisostatic rebound, as hypothesized previously (Kingslake et al., 2018).
format Text
author Neuhaus, Sarah U.
Tulaczyk, Slawek M.
Stansell, Nathan D.
Coenen, Jason J.
Scherer, Reed P.
Mikucki, Jill A.
Powell, Ross D.
spellingShingle Neuhaus, Sarah U.
Tulaczyk, Slawek M.
Stansell, Nathan D.
Coenen, Jason J.
Scherer, Reed P.
Mikucki, Jill A.
Powell, Ross D.
Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?
author_facet Neuhaus, Sarah U.
Tulaczyk, Slawek M.
Stansell, Nathan D.
Coenen, Jason J.
Scherer, Reed P.
Mikucki, Jill A.
Powell, Ross D.
author_sort Neuhaus, Sarah U.
title Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?
title_short Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?
title_full Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?
title_fullStr Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?
title_full_unstemmed Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?
title_sort did holocene climate changes drive west antarctic grounding line retreat and readvance?
publishDate 2021
url https://doi.org/10.5194/tc-15-4655-2021
https://tc.copernicus.org/articles/15/4655/2021/
long_lat ENVELOPE(-83.917,-83.917,-75.917,-75.917)
ENVELOPE(-64.150,-64.150,-84.550,-84.550)
ENVELOPE(-61.422,-61.422,-62.841,-62.841)
ENVELOPE(-64.250,-64.250,-84.450,-84.450)
ENVELOPE(-155.000,-155.000,-82.000,-82.000)
ENVELOPE(-145.000,-145.000,-83.667,-83.667)
ENVELOPE(-145.000,-145.000,-82.250,-82.250)
ENVELOPE(-142.000,-142.000,-81.000,-81.000)
geographic Antarctic
Ross Sea
West Antarctic Ice Sheet
Siple
Lowry
Conway
Whillans
Siple Coast
Whillans Ice Stream
Kamb Ice Stream
Bindschadler Ice Stream
geographic_facet Antarctic
Ross Sea
West Antarctic Ice Sheet
Siple
Lowry
Conway
Whillans
Siple Coast
Whillans Ice Stream
Kamb Ice Stream
Bindschadler Ice Stream
genre Antarc*
Antarctic
Antarctica
Bindschadler Ice Stream
Ice Sheet
Ice Shelf
Kamb Ice Stream
Ross Sea
Whillans Ice Stream
genre_facet Antarc*
Antarctic
Antarctica
Bindschadler Ice Stream
Ice Sheet
Ice Shelf
Kamb Ice Stream
Ross Sea
Whillans Ice Stream
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-15-4655-2021
https://tc.copernicus.org/articles/15/4655/2021/
op_doi https://doi.org/10.5194/tc-15-4655-2021
container_title The Cryosphere
container_volume 15
container_issue 10
container_start_page 4655
op_container_end_page 4673
_version_ 1766272465844043776
spelling ftcopernicus:oai:publications.copernicus.org:tc90428 2023-05-15T14:02:17+02:00 Did Holocene climate changes drive West Antarctic grounding line retreat and readvance? Neuhaus, Sarah U. Tulaczyk, Slawek M. Stansell, Nathan D. Coenen, Jason J. Scherer, Reed P. Mikucki, Jill A. Powell, Ross D. 2021-10-05 application/pdf https://doi.org/10.5194/tc-15-4655-2021 https://tc.copernicus.org/articles/15/4655/2021/ eng eng doi:10.5194/tc-15-4655-2021 https://tc.copernicus.org/articles/15/4655/2021/ eISSN: 1994-0424 Text 2021 ftcopernicus https://doi.org/10.5194/tc-15-4655-2021 2021-10-11T16:22:29Z Knowledge of past ice sheet configurations is useful for informing projections of future ice sheet dynamics and for calibrating ice sheet models. The topology of grounding line retreat in the Ross Sea sector of Antarctica has been much debated, but it has generally been assumed that the modern ice sheet is as small as it has been for more than 100 000 years (Conway et al., 1999; Lee et al., 2017; Lowry et al., 2019; McKay et al., 2016; Scherer et al., 1998). Recent findings suggest that the West Antarctic Ice Sheet (WAIS) grounding line retreated beyond its current location earlier in the Holocene and subsequently readvanced to reach its modern position (Bradley et al., 2015; Kingslake et al., 2018). Here, we further constrain the post-LGM (Last Glacial Maximum) grounding line retreat and readvance in the Ross Sea sector using a two-phase model of radiocarbon input and decay in subglacial sediments from six sub-ice sampling locations. In addition, we reinterpret high basal temperature gradients, measured previously at three sites in this region (Engelhardt, 2004), which we explain as resulting from recent ice shelf re-grounding accompanying grounding line readvance. At one location – Whillans Subglacial Lake (SLW) – for which a sediment porewater chemistry profile is known, we estimate the grounding line readvance by simulating ionic diffusion. Collectively, our analyses indicate that the grounding line retreated over SLW <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">4300</mn><mrow><mo>-</mo><mn mathvariant="normal">2500</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">1500</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="a00bd3b1235980ba5027f9213935f3e1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00001.svg" width="50pt" height="17pt" src="tc-15-4655-2021-ie00001.png"/></svg:svg> years ago, and over sites on Whillans Ice Stream (WIS), Kamb Ice Stream (KIS), and Bindschadler Ice Stream (BIS) <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">4700</mn><mrow><mo>-</mo><mn mathvariant="normal">2300</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">1500</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="8ea3cdc752d825e150a50fa096dc14c0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00002.svg" width="50pt" height="17pt" src="tc-15-4655-2021-ie00002.png"/></svg:svg> , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1800</mn><mrow><mo>-</mo><mn mathvariant="normal">700</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">2700</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="f4dbde8f75753f3f5e54f8da3e5f1657"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00003.svg" width="50pt" height="17pt" src="tc-15-4655-2021-ie00003.png"/></svg:svg> , and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1700</mn><mrow><mo>-</mo><mn mathvariant="normal">600</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">2800</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="4986eac78ba7519194de6c544dfb01e1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00004.svg" width="50pt" height="17pt" src="tc-15-4655-2021-ie00004.png"/></svg:svg> years ago, respectively. The grounding line only recently readvanced back over those sites <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1100</mn><mrow><mo>-</mo><mn mathvariant="normal">100</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">200</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="6e12a66362c3f87b893569be042a8ae1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00005.svg" width="45pt" height="17pt" src="tc-15-4655-2021-ie00005.png"/></svg:svg> , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1500</mn><mrow><mo>-</mo><mn mathvariant="normal">200</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">500</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="5c61b1bbcd0a9632b699281702f3688f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00006.svg" width="45pt" height="17pt" src="tc-15-4655-2021-ie00006.png"/></svg:svg> , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1000</mn><mrow><mo>-</mo><mn mathvariant="normal">300</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">200</mn></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="bf23a3a065829c4b9df41001cc16842a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-4655-2021-ie00007.svg" width="45pt" height="17pt" src="tc-15-4655-2021-ie00007.png"/></svg:svg> , and 800±100 years ago for SLW, WIS, KIS, and BIS, respectively. The timing of grounding line retreat coincided with a warm period in the mid-Holocene to late Holocene. Conversely, grounding line readvance is coincident with cooling climate in the last 1000–2000 years. Our estimates for the timing of grounding line retreat and readvance are also consistent with relatively low carbon-to-nitrogen ratios measured in our subglacial sediment samples (suggesting a marine source of organic matter) and with the lack of grounding zone wedges in front of modern grounding lines. Based on these results, we propose that the Siple Coast grounding line motions in the mid-Holocene to late Holocene were primarily driven by relatively modest changes in regional climate, rather than by ice sheet dynamics and glacioisostatic rebound, as hypothesized previously (Kingslake et al., 2018). Text Antarc* Antarctic Antarctica Bindschadler Ice Stream Ice Sheet Ice Shelf Kamb Ice Stream Ross Sea Whillans Ice Stream Copernicus Publications: E-Journals Antarctic Ross Sea West Antarctic Ice Sheet Siple ENVELOPE(-83.917,-83.917,-75.917,-75.917) Lowry ENVELOPE(-64.150,-64.150,-84.550,-84.550) Conway ENVELOPE(-61.422,-61.422,-62.841,-62.841) Whillans ENVELOPE(-64.250,-64.250,-84.450,-84.450) Siple Coast ENVELOPE(-155.000,-155.000,-82.000,-82.000) Whillans Ice Stream ENVELOPE(-145.000,-145.000,-83.667,-83.667) Kamb Ice Stream ENVELOPE(-145.000,-145.000,-82.250,-82.250) Bindschadler Ice Stream ENVELOPE(-142.000,-142.000,-81.000,-81.000) The Cryosphere 15 10 4655 4673