Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density

Estimates of snow and firn density are required for satellite-altimetry-based retrievals of ice sheet mass balance that rely on volume-to-mass conversions. Therefore, biases and errors in presently used density models confound assessments of ice sheet mass balance and by extension ice sheet contribu...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Keenan, Eric, Wever, Nander, Dattler, Marissa, Lenaerts, Jan T. M., Medley, Brooke, Kuipers Munneke, Peter, Reijmer, Carleen
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/tc-15-1065-2021
https://tc.copernicus.org/articles/15/1065/2021/
id ftcopernicus:oai:publications.copernicus.org:tc86560
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Estimates of snow and firn density are required for satellite-altimetry-based retrievals of ice sheet mass balance that rely on volume-to-mass conversions. Therefore, biases and errors in presently used density models confound assessments of ice sheet mass balance and by extension ice sheet contribution to sea level rise. Despite this importance, most contemporary firn densification models rely on simplified semi-empirical methods, which are partially reflected by significant modeled density errors when compared to observations. In this study, we present a new drifting-snow compaction scheme that we have implemented into SNOWPACK, a physics-based land surface snow model. We show that our new scheme improves existing versions of SNOWPACK by increasing simulated near-surface (defined as the top 10 m ) density to be more in line with observations (near-surface bias reduction from − 44.9 to − 5.4 kg m −3 ). Furthermore, we demonstrate high-quality simulation of near-surface Antarctic snow and firn density at 122 observed density profiles across the Antarctic ice sheet, as indicated by reduced model biases throughout most of the near-surface firn column when compared to two semi-empirical firn densification models (SNOWPACK <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>mean bias</mtext><mo>=</mo><mo>-</mo><mn mathvariant="normal">9.7</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="88pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="d4563868c957e632f059fa36e2231f24"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-1065-2021-ie00001.svg" width="88pt" height="10pt" src="tc-15-1065-2021-ie00001.png"/></svg:svg> kg m −3 , IMAU-FDM <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>mean bias</mtext><mo>=</mo><mo>-</mo><mn mathvariant="normal">32.5</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="94pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="69a418015481211ba8e90f0255d99d5f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-1065-2021-ie00002.svg" width="94pt" height="10pt" src="tc-15-1065-2021-ie00002.png"/></svg:svg> kg m −3 , GSFC-FDM mean bias=15.5 kg m −3 ). Notably, our analysis is restricted to the near surface where firn density is most variable due to accumulation and compaction variability driven by synoptic weather and seasonal climate variability. Additionally, the GSFC-FDM exhibits lower mean density bias from 7–10 m (SNOWPACK <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>bias</mtext><mo>=</mo><mo>-</mo><mn mathvariant="normal">22.5</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="e6c05470f8e77a22a94e434af6f2a97a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-1065-2021-ie00003.svg" width="64pt" height="10pt" src="tc-15-1065-2021-ie00003.png"/></svg:svg> kg m −3 , GSFC-FDM bias=10.6 kg m −3 ) and throughout the entire near surface at high-accumulation sites (SNOWPACK <math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>bias</mtext><mo>=</mo><mo>-</mo><mn mathvariant="normal">31.4</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="4ad179be01fb3b38b331d9a69c2e79e6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-1065-2021-ie00004.svg" width="64pt" height="10pt" src="tc-15-1065-2021-ie00004.png"/></svg:svg> kg m −3 , GSFC-FDM <math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>bias</mtext><mo>=</mo><mo>-</mo><mn mathvariant="normal">4.7</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="e8f3edc2b3728534494a59661e6445e7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-1065-2021-ie00005.svg" width="58pt" height="10pt" src="tc-15-1065-2021-ie00005.png"/></svg:svg> kg m −3 ). However, we found that the performance of SNOWPACK did not degrade when applied to sites that were not included in the calibration of semi-empirical models. This suggests that SNOWPACK may possibly better represent firn properties in locations without extensive observations and under future climate scenarios, when firn properties are expected to diverge from their present state.
format Text
author Keenan, Eric
Wever, Nander
Dattler, Marissa
Lenaerts, Jan T. M.
Medley, Brooke
Kuipers Munneke, Peter
Reijmer, Carleen
spellingShingle Keenan, Eric
Wever, Nander
Dattler, Marissa
Lenaerts, Jan T. M.
Medley, Brooke
Kuipers Munneke, Peter
Reijmer, Carleen
Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density
author_facet Keenan, Eric
Wever, Nander
Dattler, Marissa
Lenaerts, Jan T. M.
Medley, Brooke
Kuipers Munneke, Peter
Reijmer, Carleen
author_sort Keenan, Eric
title Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density
title_short Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density
title_full Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density
title_fullStr Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density
title_full_unstemmed Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density
title_sort physics-based snowpack model improves representation of near-surface antarctic snow and firn density
publishDate 2021
url https://doi.org/10.5194/tc-15-1065-2021
https://tc.copernicus.org/articles/15/1065/2021/
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
Ice Sheet
genre_facet Antarc*
Antarctic
Ice Sheet
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-15-1065-2021
https://tc.copernicus.org/articles/15/1065/2021/
op_doi https://doi.org/10.5194/tc-15-1065-2021
container_title The Cryosphere
container_volume 15
container_issue 2
container_start_page 1065
op_container_end_page 1085
_version_ 1766020042713989120
spelling ftcopernicus:oai:publications.copernicus.org:tc86560 2023-05-15T13:31:40+02:00 Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density Keenan, Eric Wever, Nander Dattler, Marissa Lenaerts, Jan T. M. Medley, Brooke Kuipers Munneke, Peter Reijmer, Carleen 2021-03-01 application/pdf https://doi.org/10.5194/tc-15-1065-2021 https://tc.copernicus.org/articles/15/1065/2021/ eng eng doi:10.5194/tc-15-1065-2021 https://tc.copernicus.org/articles/15/1065/2021/ eISSN: 1994-0424 Text 2021 ftcopernicus https://doi.org/10.5194/tc-15-1065-2021 2021-03-08T17:22:15Z Estimates of snow and firn density are required for satellite-altimetry-based retrievals of ice sheet mass balance that rely on volume-to-mass conversions. Therefore, biases and errors in presently used density models confound assessments of ice sheet mass balance and by extension ice sheet contribution to sea level rise. Despite this importance, most contemporary firn densification models rely on simplified semi-empirical methods, which are partially reflected by significant modeled density errors when compared to observations. In this study, we present a new drifting-snow compaction scheme that we have implemented into SNOWPACK, a physics-based land surface snow model. We show that our new scheme improves existing versions of SNOWPACK by increasing simulated near-surface (defined as the top 10 m ) density to be more in line with observations (near-surface bias reduction from − 44.9 to − 5.4 kg m −3 ). Furthermore, we demonstrate high-quality simulation of near-surface Antarctic snow and firn density at 122 observed density profiles across the Antarctic ice sheet, as indicated by reduced model biases throughout most of the near-surface firn column when compared to two semi-empirical firn densification models (SNOWPACK <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>mean bias</mtext><mo>=</mo><mo>-</mo><mn mathvariant="normal">9.7</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="88pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="d4563868c957e632f059fa36e2231f24"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-1065-2021-ie00001.svg" width="88pt" height="10pt" src="tc-15-1065-2021-ie00001.png"/></svg:svg> kg m −3 , IMAU-FDM <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>mean bias</mtext><mo>=</mo><mo>-</mo><mn mathvariant="normal">32.5</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="94pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="69a418015481211ba8e90f0255d99d5f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-1065-2021-ie00002.svg" width="94pt" height="10pt" src="tc-15-1065-2021-ie00002.png"/></svg:svg> kg m −3 , GSFC-FDM mean bias=15.5 kg m −3 ). Notably, our analysis is restricted to the near surface where firn density is most variable due to accumulation and compaction variability driven by synoptic weather and seasonal climate variability. Additionally, the GSFC-FDM exhibits lower mean density bias from 7–10 m (SNOWPACK <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>bias</mtext><mo>=</mo><mo>-</mo><mn mathvariant="normal">22.5</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="e6c05470f8e77a22a94e434af6f2a97a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-1065-2021-ie00003.svg" width="64pt" height="10pt" src="tc-15-1065-2021-ie00003.png"/></svg:svg> kg m −3 , GSFC-FDM bias=10.6 kg m −3 ) and throughout the entire near surface at high-accumulation sites (SNOWPACK <math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>bias</mtext><mo>=</mo><mo>-</mo><mn mathvariant="normal">31.4</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="4ad179be01fb3b38b331d9a69c2e79e6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-1065-2021-ie00004.svg" width="64pt" height="10pt" src="tc-15-1065-2021-ie00004.png"/></svg:svg> kg m −3 , GSFC-FDM <math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mtext>bias</mtext><mo>=</mo><mo>-</mo><mn mathvariant="normal">4.7</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="e8f3edc2b3728534494a59661e6445e7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-1065-2021-ie00005.svg" width="58pt" height="10pt" src="tc-15-1065-2021-ie00005.png"/></svg:svg> kg m −3 ). However, we found that the performance of SNOWPACK did not degrade when applied to sites that were not included in the calibration of semi-empirical models. This suggests that SNOWPACK may possibly better represent firn properties in locations without extensive observations and under future climate scenarios, when firn properties are expected to diverge from their present state. Text Antarc* Antarctic Ice Sheet Copernicus Publications: E-Journals Antarctic The Antarctic The Cryosphere 15 2 1065 1085