Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard

Cold glacier beds, i.e., where the ice is frozen to its base, are widespread in polar regions. Common theories state that stable permafrost should exist under glacier beds on shorter timescales, varying from years to decades. Presently, only a few direct measurements of both subglacial permafrost an...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Alexander, Andreas, Obu, Jaroslav, Schuler, Thomas V., Kääb, Andreas, Christiansen, Hanne H.
Format: Text
Language:English
Published: 2020
Subjects:
Ice
Online Access:https://doi.org/10.5194/tc-14-4217-2020
https://tc.copernicus.org/articles/14/4217/2020/
id ftcopernicus:oai:publications.copernicus.org:tc85378
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:tc85378 2023-05-15T16:22:12+02:00 Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard Alexander, Andreas Obu, Jaroslav Schuler, Thomas V. Kääb, Andreas Christiansen, Hanne H. 2020-11-26 application/pdf https://doi.org/10.5194/tc-14-4217-2020 https://tc.copernicus.org/articles/14/4217/2020/ eng eng doi:10.5194/tc-14-4217-2020 https://tc.copernicus.org/articles/14/4217/2020/ eISSN: 1994-0424 Text 2020 ftcopernicus https://doi.org/10.5194/tc-14-4217-2020 2020-11-30T17:22:13Z Cold glacier beds, i.e., where the ice is frozen to its base, are widespread in polar regions. Common theories state that stable permafrost should exist under glacier beds on shorter timescales, varying from years to decades. Presently, only a few direct measurements of both subglacial permafrost and the processes influencing its thermal regime exist. Here, we present subglacial permafrost and active layer measurements obtained from within the basal drainage systems of two cold-based glaciers on Svalbard during the summer melt season. Temperature observations were obtained from subglacial sediment that was accessed through the drainage systems of the two glaciers in the previous winters. The temperature records cover the periods from spring to autumn in 2016 and 2019 at the glaciers Larsbreen and Tellbreen in central Svalbard. The ground temperature below Larsbreen indicates colder ground conditions, whereas the temperatures of the Tellbreen drainage system show considerably warmer conditions, close to the freezing point. We suggest the latter is due to the presence of liquid water all year round inside the Tellbreen drainage system. Both drainage systems investigated show an increase in subglacial sediment temperatures after the disappearance of snow bridges and the subsequent connection to surface meltwater supply at the start of the summer melt season. Temperature records show influence of sudden summer water supply events, when heavy melt and rain left their signatures on the thermal regime and the erosion of the glacier bed. Observed vertical erosion can reach up to 0.9 m d −1 at the base of basal drainage channels during summer. We also show that the thermal regime under the subglacial drainage systems is not stable during summer but experiences several freeze–thaw cycles driven by weather events. Our results show the direct importance of heavy melt events and rain on the thermal regime of subglacial permafrost and the erosion of the glacier bed in the vicinity of subglacial drainage channels. Increased precipitation and surface melt, as expected for future climate, will therefore likely lead to increased degradation of subglacial permafrost, as well as higher subglacial erosion of available sediment around the preferential hydrological paths. This in turn might have significant impacts on proglacial and fjord ecosystems due to increased sediment and nutrient input. Text glacier Ice permafrost Svalbard Copernicus Publications: E-Journals Larsbreen ENVELOPE(15.567,15.567,78.183,78.183) Svalbard Tellbreen ENVELOPE(16.217,16.217,78.250,78.250) The Cryosphere 14 11 4217 4231
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Cold glacier beds, i.e., where the ice is frozen to its base, are widespread in polar regions. Common theories state that stable permafrost should exist under glacier beds on shorter timescales, varying from years to decades. Presently, only a few direct measurements of both subglacial permafrost and the processes influencing its thermal regime exist. Here, we present subglacial permafrost and active layer measurements obtained from within the basal drainage systems of two cold-based glaciers on Svalbard during the summer melt season. Temperature observations were obtained from subglacial sediment that was accessed through the drainage systems of the two glaciers in the previous winters. The temperature records cover the periods from spring to autumn in 2016 and 2019 at the glaciers Larsbreen and Tellbreen in central Svalbard. The ground temperature below Larsbreen indicates colder ground conditions, whereas the temperatures of the Tellbreen drainage system show considerably warmer conditions, close to the freezing point. We suggest the latter is due to the presence of liquid water all year round inside the Tellbreen drainage system. Both drainage systems investigated show an increase in subglacial sediment temperatures after the disappearance of snow bridges and the subsequent connection to surface meltwater supply at the start of the summer melt season. Temperature records show influence of sudden summer water supply events, when heavy melt and rain left their signatures on the thermal regime and the erosion of the glacier bed. Observed vertical erosion can reach up to 0.9 m d −1 at the base of basal drainage channels during summer. We also show that the thermal regime under the subglacial drainage systems is not stable during summer but experiences several freeze–thaw cycles driven by weather events. Our results show the direct importance of heavy melt events and rain on the thermal regime of subglacial permafrost and the erosion of the glacier bed in the vicinity of subglacial drainage channels. Increased precipitation and surface melt, as expected for future climate, will therefore likely lead to increased degradation of subglacial permafrost, as well as higher subglacial erosion of available sediment around the preferential hydrological paths. This in turn might have significant impacts on proglacial and fjord ecosystems due to increased sediment and nutrient input.
format Text
author Alexander, Andreas
Obu, Jaroslav
Schuler, Thomas V.
Kääb, Andreas
Christiansen, Hanne H.
spellingShingle Alexander, Andreas
Obu, Jaroslav
Schuler, Thomas V.
Kääb, Andreas
Christiansen, Hanne H.
Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard
author_facet Alexander, Andreas
Obu, Jaroslav
Schuler, Thomas V.
Kääb, Andreas
Christiansen, Hanne H.
author_sort Alexander, Andreas
title Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard
title_short Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard
title_full Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard
title_fullStr Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard
title_full_unstemmed Subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in Svalbard
title_sort subglacial permafrost dynamics and erosion inside subglacial channels driven by surface events in svalbard
publishDate 2020
url https://doi.org/10.5194/tc-14-4217-2020
https://tc.copernicus.org/articles/14/4217/2020/
long_lat ENVELOPE(15.567,15.567,78.183,78.183)
ENVELOPE(16.217,16.217,78.250,78.250)
geographic Larsbreen
Svalbard
Tellbreen
geographic_facet Larsbreen
Svalbard
Tellbreen
genre glacier
Ice
permafrost
Svalbard
genre_facet glacier
Ice
permafrost
Svalbard
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-14-4217-2020
https://tc.copernicus.org/articles/14/4217/2020/
op_doi https://doi.org/10.5194/tc-14-4217-2020
container_title The Cryosphere
container_volume 14
container_issue 11
container_start_page 4217
op_container_end_page 4231
_version_ 1766010175812009984