Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen

Monacobreen is a 40 km long surge-type tidewater glacier in northern Spitsbergen. During 1991–1997 Monacobreen surged and advanced by about 2 km, but the front did not reach the maximum Little Ice Age (LIA) stand. Since 1997 the glacier front is retreating at a fast rate ( ∼125 m a −1 ). The questio...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Author: Oerlemans, Johannes
Format: Text
Language:English
Published: 2018
Subjects:
Ela
Online Access:https://doi.org/10.5194/tc-12-3001-2018
https://tc.copernicus.org/articles/12/3001/2018/
id ftcopernicus:oai:publications.copernicus.org:tc66154
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Monacobreen is a 40 km long surge-type tidewater glacier in northern Spitsbergen. During 1991–1997 Monacobreen surged and advanced by about 2 km, but the front did not reach the maximum Little Ice Age (LIA) stand. Since 1997 the glacier front is retreating at a fast rate ( ∼125 m a −1 ). The questions addressed in this study are as follows: (1) Can the late Holocene behaviour of Monacobreen be understood in terms of climatic forcing?, and (2) What will be the likely evolution of this glacier for different scenarios of future climate change? Monacobreen is modelled with a minimal glacier model, including a parameterization of the calving process as well as the effect of surges. The model is driven by an equilibrium-line altitude (ELA) history derived from lake sediments of a nearby glacier catchment in combination with meteorological data from 1899 onwards. The simulated glacier length is in good agreement with the observations: the maximum LIA stand, the front position at the end of the surge, and the 2.5 km retreat after the surge (1997–2016) are well reproduced (the mean difference between observed and simulated glacier length being 6 % when scaled with the total retreat during 1900–2016). The effect of surging is limited. Directly after a surge the initiated mass balance perturbation due to a lower mean surface elevation is about <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.13</mn><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="80pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5c3075e78ac2b99ab91b018004f9aa0d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-3001-2018-ie00001.svg" width="80pt" height="14pt" src="tc-12-3001-2018-ie00001.png"/></svg:svg> , which only has a small effect on the long-term evolution of the glacier. The simulation suggests that the major growth of Monacobreen after the Holocene climatic optimum started around 1500 BCE. Monacobreen became a tidewater glacier around 500 BCE and reached a size comparable to the present state around 500 CE. For the mid-B2 scenario (IPCC, 2013), which corresponds to a <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">2</mn><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="9c18d04e4e73a94f3559a5dfe80b7eef"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-3001-2018-ie00002.svg" width="46pt" height="13pt" src="tc-12-3001-2018-ie00002.png"/></svg:svg> rise of the ELA, the model predicts a volume loss of 20 % to 30 % by the year 2100 (relative to the 2017 volume). For a <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">4</mn><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="d2d8923408044cbbbf4d069a4a27692c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-3001-2018-ie00003.svg" width="46pt" height="13pt" src="tc-12-3001-2018-ie00003.png"/></svg:svg> rise in the ELA this is 30 % to 40 %. However, much of the response to 21st century warming will still come after 2100.
format Text
author Oerlemans, Johannes
spellingShingle Oerlemans, Johannes
Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen
author_facet Oerlemans, Johannes
author_sort Oerlemans, Johannes
title Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen
title_short Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen
title_full Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen
title_fullStr Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen
title_full_unstemmed Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen
title_sort modelling the late holocene and future evolution of monacobreen, northern spitsbergen
publishDate 2018
url https://doi.org/10.5194/tc-12-3001-2018
https://tc.copernicus.org/articles/12/3001/2018/
long_lat ENVELOPE(9.642,9.642,63.170,63.170)
ENVELOPE(12.550,12.550,79.500,79.500)
geographic Ela
Monacobreen
geographic_facet Ela
Monacobreen
genre Tidewater
Spitsbergen
genre_facet Tidewater
Spitsbergen
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-12-3001-2018
https://tc.copernicus.org/articles/12/3001/2018/
op_doi https://doi.org/10.5194/tc-12-3001-2018
container_title The Cryosphere
container_volume 12
container_issue 9
container_start_page 3001
op_container_end_page 3015
_version_ 1766217358174584832
spelling ftcopernicus:oai:publications.copernicus.org:tc66154 2023-05-15T18:33:04+02:00 Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen Oerlemans, Johannes 2018-11-28 application/pdf https://doi.org/10.5194/tc-12-3001-2018 https://tc.copernicus.org/articles/12/3001/2018/ eng eng doi:10.5194/tc-12-3001-2018 https://tc.copernicus.org/articles/12/3001/2018/ eISSN: 1994-0424 Text 2018 ftcopernicus https://doi.org/10.5194/tc-12-3001-2018 2020-07-20T16:23:06Z Monacobreen is a 40 km long surge-type tidewater glacier in northern Spitsbergen. During 1991–1997 Monacobreen surged and advanced by about 2 km, but the front did not reach the maximum Little Ice Age (LIA) stand. Since 1997 the glacier front is retreating at a fast rate ( ∼125 m a −1 ). The questions addressed in this study are as follows: (1) Can the late Holocene behaviour of Monacobreen be understood in terms of climatic forcing?, and (2) What will be the likely evolution of this glacier for different scenarios of future climate change? Monacobreen is modelled with a minimal glacier model, including a parameterization of the calving process as well as the effect of surges. The model is driven by an equilibrium-line altitude (ELA) history derived from lake sediments of a nearby glacier catchment in combination with meteorological data from 1899 onwards. The simulated glacier length is in good agreement with the observations: the maximum LIA stand, the front position at the end of the surge, and the 2.5 km retreat after the surge (1997–2016) are well reproduced (the mean difference between observed and simulated glacier length being 6 % when scaled with the total retreat during 1900–2016). The effect of surging is limited. Directly after a surge the initiated mass balance perturbation due to a lower mean surface elevation is about <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.13</mn><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="80pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5c3075e78ac2b99ab91b018004f9aa0d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-3001-2018-ie00001.svg" width="80pt" height="14pt" src="tc-12-3001-2018-ie00001.png"/></svg:svg> , which only has a small effect on the long-term evolution of the glacier. The simulation suggests that the major growth of Monacobreen after the Holocene climatic optimum started around 1500 BCE. Monacobreen became a tidewater glacier around 500 BCE and reached a size comparable to the present state around 500 CE. For the mid-B2 scenario (IPCC, 2013), which corresponds to a <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">2</mn><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="9c18d04e4e73a94f3559a5dfe80b7eef"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-3001-2018-ie00002.svg" width="46pt" height="13pt" src="tc-12-3001-2018-ie00002.png"/></svg:svg> rise of the ELA, the model predicts a volume loss of 20 % to 30 % by the year 2100 (relative to the 2017 volume). For a <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">4</mn><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="d2d8923408044cbbbf4d069a4a27692c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-3001-2018-ie00003.svg" width="46pt" height="13pt" src="tc-12-3001-2018-ie00003.png"/></svg:svg> rise in the ELA this is 30 % to 40 %. However, much of the response to 21st century warming will still come after 2100. Text Tidewater Spitsbergen Copernicus Publications: E-Journals Ela ENVELOPE(9.642,9.642,63.170,63.170) Monacobreen ENVELOPE(12.550,12.550,79.500,79.500) The Cryosphere 12 9 3001 3015