Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica

Antarctic ice core nitrate (NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-&l...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Shi, Guitao, Hastings, Meredith G., Yu, Jinhai, Ma, Tianming, Hu, Zhengyi, An, Chunlei, Li, Chuanjin, Ma, Hongmei, Jiang, Su, Li, Yuansheng
Format: Text
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.5194/tc-12-1177-2018
https://tc.copernicus.org/articles/12/1177/2018/
id ftcopernicus:oai:publications.copernicus.org:tc62446
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Antarctic ice core nitrate (NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="5c4cefaf8b78d41c1ce2f2ef151f712f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00001.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00001.png"/></svg:svg> ) can provide a unique record of the atmospheric reactive nitrogen cycle. However, the factors influencing the deposition and preservation of NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="53e1f98be2cdf70dbe180d95894fc6b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00002.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00002.png"/></svg:svg> at the ice sheet surface must first be understood. Therefore, an intensive program of snow and atmospheric sampling was made on a traverse from the coast to the ice sheet summit, Dome A, East Antarctica. Snow samples in this observation include 120 surface snow samples (top ∼ 3 cm), 20 snow pits with depths of 150 to 300 cm, and 6 crystal ice samples (the topmost needle-like layer on Dome A plateau). The main purpose of this investigation is to characterize the distribution pattern and preservation of NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0723f17b5be9fc41c36a5585631feb47"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00003.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00003.png"/></svg:svg> concentrations in the snow in different environments. Results show that an increasing trend of NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8c72af1edd6d67ed562efcaf5163d22b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00004.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00004.png"/></svg:svg> concentrations with distance inland is present in surface snow, and NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a6a4c5911a740e8377438efb607d4b86"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00005.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00005.png"/></svg:svg> is extremely enriched in the topmost crystal ice (with a maximum of 16.1 µ eq L −1 ) . NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="1933cd4f78557ae19e1c84fa4d0b5473"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00006.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00006.png"/></svg:svg> concentration profiles for snow pits vary between coastal and inland sites. On the coast, the deposited NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="78ed0f7e81615226176402cdd6a1afd5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00007.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00007.png"/></svg:svg> was largely preserved, and the archived NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="fa1148a5a7ab62133104fb46bf612014"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00008.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00008.png"/></svg:svg> fluxes are dominated by snow accumulation. The relationship between the archived NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ee54bb0fff66afdafaf51bed1fde360d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00009.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00009.png"/></svg:svg> and snow accumulation rate can be depicted well by a linear model, suggesting a homogeneity of atmospheric NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a192f22c747584054322d55d69a940ca"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00010.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00010.png"/></svg:svg> levels. It is estimated that dry deposition contributes 27–44 % of the archived NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ad57fe4a8dcf7ebabf2d1e48d90b5292"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00011.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00011.png"/></svg:svg> fluxes, and the dry deposition velocity and scavenging ratio for NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9f81e901bf06635e082f559a787da68a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00012.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00012.png"/></svg:svg> were relatively constant near the coast. Compared to the coast, the inland snow shows a relatively weak correlation between archived NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="06954914259a113e7faaa0d01a8ee756"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00013.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00013.png"/></svg:svg> and snow accumulation, and the archived NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="5a2143864edd3f7cf8f1639018917994"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00014.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00014.png"/></svg:svg> fluxes were more dependent on concentration. The relationship between NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="2a83a52cafded6cc529076279999d0cd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00015.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00015.png"/></svg:svg> and coexisting ions (nssSO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="49798bc14746e7788afe38c7f4bc425f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00016.svg" width="13pt" height="17pt" src="tc-12-1177-2018-ie00016.png"/></svg:svg> , Na + and Cl − ) was also investigated, and the results show a correlation between nssSO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="d290f1661057ae2dbc6fb8878fe6c5e2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00017.svg" width="13pt" height="17pt" src="tc-12-1177-2018-ie00017.png"/></svg:svg> (fine aerosol particles) and NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d4917cb251612ae03efebb0a66479930"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00018.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00018.png"/></svg:svg> in surface snow, while the correlation between NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d615913ec88b34ee0c05b0f0374db64d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00019.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00019.png"/></svg:svg> and Na + (mainly associated with coarse aerosol particles) is not significant. In inland snow, there were no significant relationships found between NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d96e0e0e6a6172a7d34ac185b1d0a8a7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00020.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00020.png"/></svg:svg> and the coexisting ions, suggesting a dominant role of NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d4f68d92324ab64740c52d46a6e06853"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00021.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00021.png"/></svg:svg> recycling in determining the concentrations.
format Text
author Shi, Guitao
Hastings, Meredith G.
Yu, Jinhai
Ma, Tianming
Hu, Zhengyi
An, Chunlei
Li, Chuanjin
Ma, Hongmei
Jiang, Su
Li, Yuansheng
spellingShingle Shi, Guitao
Hastings, Meredith G.
Yu, Jinhai
Ma, Tianming
Hu, Zhengyi
An, Chunlei
Li, Chuanjin
Ma, Hongmei
Jiang, Su
Li, Yuansheng
Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica
author_facet Shi, Guitao
Hastings, Meredith G.
Yu, Jinhai
Ma, Tianming
Hu, Zhengyi
An, Chunlei
Li, Chuanjin
Ma, Hongmei
Jiang, Su
Li, Yuansheng
author_sort Shi, Guitao
title Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica
title_short Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica
title_full Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica
title_fullStr Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica
title_full_unstemmed Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica
title_sort nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (dome a) in east antarctica
publishDate 2019
url https://doi.org/10.5194/tc-12-1177-2018
https://tc.copernicus.org/articles/12/1177/2018/
geographic Antarctic
East Antarctica
geographic_facet Antarctic
East Antarctica
genre Antarc*
Antarctic
Antarctica
East Antarctica
ice core
Ice Sheet
genre_facet Antarc*
Antarctic
Antarctica
East Antarctica
ice core
Ice Sheet
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-12-1177-2018
https://tc.copernicus.org/articles/12/1177/2018/
op_doi https://doi.org/10.5194/tc-12-1177-2018
container_title The Cryosphere
container_volume 12
container_issue 4
container_start_page 1177
op_container_end_page 1194
_version_ 1766262134579134464
spelling ftcopernicus:oai:publications.copernicus.org:tc62446 2023-05-15T13:55:28+02:00 Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica Shi, Guitao Hastings, Meredith G. Yu, Jinhai Ma, Tianming Hu, Zhengyi An, Chunlei Li, Chuanjin Ma, Hongmei Jiang, Su Li, Yuansheng 2019-01-11 application/pdf https://doi.org/10.5194/tc-12-1177-2018 https://tc.copernicus.org/articles/12/1177/2018/ eng eng doi:10.5194/tc-12-1177-2018 https://tc.copernicus.org/articles/12/1177/2018/ eISSN: 1994-0424 Text 2019 ftcopernicus https://doi.org/10.5194/tc-12-1177-2018 2020-07-20T16:23:20Z Antarctic ice core nitrate (NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="5c4cefaf8b78d41c1ce2f2ef151f712f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00001.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00001.png"/></svg:svg> ) can provide a unique record of the atmospheric reactive nitrogen cycle. However, the factors influencing the deposition and preservation of NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="53e1f98be2cdf70dbe180d95894fc6b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00002.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00002.png"/></svg:svg> at the ice sheet surface must first be understood. Therefore, an intensive program of snow and atmospheric sampling was made on a traverse from the coast to the ice sheet summit, Dome A, East Antarctica. Snow samples in this observation include 120 surface snow samples (top ∼ 3 cm), 20 snow pits with depths of 150 to 300 cm, and 6 crystal ice samples (the topmost needle-like layer on Dome A plateau). The main purpose of this investigation is to characterize the distribution pattern and preservation of NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0723f17b5be9fc41c36a5585631feb47"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00003.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00003.png"/></svg:svg> concentrations in the snow in different environments. Results show that an increasing trend of NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8c72af1edd6d67ed562efcaf5163d22b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00004.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00004.png"/></svg:svg> concentrations with distance inland is present in surface snow, and NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a6a4c5911a740e8377438efb607d4b86"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00005.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00005.png"/></svg:svg> is extremely enriched in the topmost crystal ice (with a maximum of 16.1 µ eq L −1 ) . NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="1933cd4f78557ae19e1c84fa4d0b5473"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00006.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00006.png"/></svg:svg> concentration profiles for snow pits vary between coastal and inland sites. On the coast, the deposited NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="78ed0f7e81615226176402cdd6a1afd5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00007.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00007.png"/></svg:svg> was largely preserved, and the archived NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="fa1148a5a7ab62133104fb46bf612014"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00008.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00008.png"/></svg:svg> fluxes are dominated by snow accumulation. The relationship between the archived NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ee54bb0fff66afdafaf51bed1fde360d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00009.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00009.png"/></svg:svg> and snow accumulation rate can be depicted well by a linear model, suggesting a homogeneity of atmospheric NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a192f22c747584054322d55d69a940ca"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00010.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00010.png"/></svg:svg> levels. It is estimated that dry deposition contributes 27–44 % of the archived NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ad57fe4a8dcf7ebabf2d1e48d90b5292"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00011.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00011.png"/></svg:svg> fluxes, and the dry deposition velocity and scavenging ratio for NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9f81e901bf06635e082f559a787da68a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00012.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00012.png"/></svg:svg> were relatively constant near the coast. Compared to the coast, the inland snow shows a relatively weak correlation between archived NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="06954914259a113e7faaa0d01a8ee756"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00013.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00013.png"/></svg:svg> and snow accumulation, and the archived NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="5a2143864edd3f7cf8f1639018917994"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00014.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00014.png"/></svg:svg> fluxes were more dependent on concentration. The relationship between NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="2a83a52cafded6cc529076279999d0cd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00015.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00015.png"/></svg:svg> and coexisting ions (nssSO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="49798bc14746e7788afe38c7f4bc425f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00016.svg" width="13pt" height="17pt" src="tc-12-1177-2018-ie00016.png"/></svg:svg> , Na + and Cl − ) was also investigated, and the results show a correlation between nssSO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="d290f1661057ae2dbc6fb8878fe6c5e2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00017.svg" width="13pt" height="17pt" src="tc-12-1177-2018-ie00017.png"/></svg:svg> (fine aerosol particles) and NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d4917cb251612ae03efebb0a66479930"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00018.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00018.png"/></svg:svg> in surface snow, while the correlation between NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d615913ec88b34ee0c05b0f0374db64d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00019.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00019.png"/></svg:svg> and Na + (mainly associated with coarse aerosol particles) is not significant. In inland snow, there were no significant relationships found between NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d96e0e0e6a6172a7d34ac185b1d0a8a7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00020.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00020.png"/></svg:svg> and the coexisting ions, suggesting a dominant role of NO <math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d4f68d92324ab64740c52d46a6e06853"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-12-1177-2018-ie00021.svg" width="9pt" height="16pt" src="tc-12-1177-2018-ie00021.png"/></svg:svg> recycling in determining the concentrations. Text Antarc* Antarctic Antarctica East Antarctica ice core Ice Sheet Copernicus Publications: E-Journals Antarctic East Antarctica The Cryosphere 12 4 1177 1194