Comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice

Within the context of developing data inversion and assimilation techniques for C-band backscatter over sea ice, snow physical models may be used to drive backscatter models for comparison and optimization with satellite observations. Such modeling has the potential to enhance understanding of snow...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Fuller, M. C., Geldsetzer, T., Yackel, J., Gill, J. P. S.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/tc-9-2149-2015
https://tc.copernicus.org/articles/9/2149/2015/
id ftcopernicus:oai:publications.copernicus.org:tc29926
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:tc29926 2023-05-15T18:17:17+02:00 Comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice Fuller, M. C. Geldsetzer, T. Yackel, J. Gill, J. P. S. 2018-09-27 application/pdf https://doi.org/10.5194/tc-9-2149-2015 https://tc.copernicus.org/articles/9/2149/2015/ eng eng doi:10.5194/tc-9-2149-2015 https://tc.copernicus.org/articles/9/2149/2015/ eISSN: 1994-0424 Text 2018 ftcopernicus https://doi.org/10.5194/tc-9-2149-2015 2020-07-20T16:24:22Z Within the context of developing data inversion and assimilation techniques for C-band backscatter over sea ice, snow physical models may be used to drive backscatter models for comparison and optimization with satellite observations. Such modeling has the potential to enhance understanding of snow on sea-ice properties required for unambiguous interpretation of active microwave imagery. An end-to-end modeling suite is introduced, incorporating regional reanalysis data (NARR), a snow model (SNTHERM89.rev4), and a multilayer snow and ice active microwave backscatter model (MSIB). This modeling suite is assessed against measured snow on sea-ice geophysical properties and against measured active microwave backscatter. NARR data were input to the SNTHERM snow thermodynamic model in order to drive the MSIB model for comparison to detailed geophysical measurements and surface-based observations of C-band backscatter of snow on first-year sea ice. The NARR variables were correlated to available in situ measurements with the exception of long-wave incoming radiation and relative humidity, which impacted SNTHERM simulations of snow temperature. SNTHERM snow grain size and density were comparable to observations. The first assessment of the forward assimilation technique developed in this work required the application of in situ salinity profiles to one SNTHERM snow profile, which resulted in simulated backscatter close to that driven by in situ snow properties. In other test cases, the simulated backscatter remained 4–6 dB below observed for higher incidence angles and when compared to an average simulated backscatter of in situ end-member snow covers. Development of C-band inversion and assimilation schemes employing SNTHERM89.rev4 should consider sensitivity of the model to bias in incoming long-wave radiation, the effects of brine, and the inability of SNTHERM89.Rev4 to simulate water accumulation and refreezing at the bottom and mid-layers of the snowpack. These impact thermodynamic response, brine wicking and volume processes, snow dielectrics, and thus microwave backscatter from snow on first-year sea ice. Text Sea ice Copernicus Publications: E-Journals The Cryosphere 9 6 2149 2161
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Within the context of developing data inversion and assimilation techniques for C-band backscatter over sea ice, snow physical models may be used to drive backscatter models for comparison and optimization with satellite observations. Such modeling has the potential to enhance understanding of snow on sea-ice properties required for unambiguous interpretation of active microwave imagery. An end-to-end modeling suite is introduced, incorporating regional reanalysis data (NARR), a snow model (SNTHERM89.rev4), and a multilayer snow and ice active microwave backscatter model (MSIB). This modeling suite is assessed against measured snow on sea-ice geophysical properties and against measured active microwave backscatter. NARR data were input to the SNTHERM snow thermodynamic model in order to drive the MSIB model for comparison to detailed geophysical measurements and surface-based observations of C-band backscatter of snow on first-year sea ice. The NARR variables were correlated to available in situ measurements with the exception of long-wave incoming radiation and relative humidity, which impacted SNTHERM simulations of snow temperature. SNTHERM snow grain size and density were comparable to observations. The first assessment of the forward assimilation technique developed in this work required the application of in situ salinity profiles to one SNTHERM snow profile, which resulted in simulated backscatter close to that driven by in situ snow properties. In other test cases, the simulated backscatter remained 4–6 dB below observed for higher incidence angles and when compared to an average simulated backscatter of in situ end-member snow covers. Development of C-band inversion and assimilation schemes employing SNTHERM89.rev4 should consider sensitivity of the model to bias in incoming long-wave radiation, the effects of brine, and the inability of SNTHERM89.Rev4 to simulate water accumulation and refreezing at the bottom and mid-layers of the snowpack. These impact thermodynamic response, brine wicking and volume processes, snow dielectrics, and thus microwave backscatter from snow on first-year sea ice.
format Text
author Fuller, M. C.
Geldsetzer, T.
Yackel, J.
Gill, J. P. S.
spellingShingle Fuller, M. C.
Geldsetzer, T.
Yackel, J.
Gill, J. P. S.
Comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice
author_facet Fuller, M. C.
Geldsetzer, T.
Yackel, J.
Gill, J. P. S.
author_sort Fuller, M. C.
title Comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice
title_short Comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice
title_full Comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice
title_fullStr Comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice
title_full_unstemmed Comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice
title_sort comparison of a coupled snow thermodynamic and radiative transfer model with in situ active microwave signatures of snow-covered smooth first-year sea ice
publishDate 2018
url https://doi.org/10.5194/tc-9-2149-2015
https://tc.copernicus.org/articles/9/2149/2015/
genre Sea ice
genre_facet Sea ice
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-9-2149-2015
https://tc.copernicus.org/articles/9/2149/2015/
op_doi https://doi.org/10.5194/tc-9-2149-2015
container_title The Cryosphere
container_volume 9
container_issue 6
container_start_page 2149
op_container_end_page 2161
_version_ 1766191412534050816