Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet

The albedo of a snowpack depends on the single-scattering properties of individual snow crystals, which have a variety of shapes and sizes, and are often bounded in clusters. From the point of view of optical modelling, it is essential to identify the geometric dimensions of the population of snow p...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Pirazzini, R., Räisänen, P., Vihma, T., Johansson, M., Tastula, E.-M.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/tc-9-2357-2015
https://tc.copernicus.org/articles/9/2357/2015/
id ftcopernicus:oai:publications.copernicus.org:tc29545
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:tc29545 2023-05-15T13:54:27+02:00 Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet Pirazzini, R. Räisänen, P. Vihma, T. Johansson, M. Tastula, E.-M. 2018-09-27 application/pdf https://doi.org/10.5194/tc-9-2357-2015 https://tc.copernicus.org/articles/9/2357/2015/ eng eng doi:10.5194/tc-9-2357-2015 https://tc.copernicus.org/articles/9/2357/2015/ eISSN: 1994-0424 Text 2018 ftcopernicus https://doi.org/10.5194/tc-9-2357-2015 2020-07-20T16:24:20Z The albedo of a snowpack depends on the single-scattering properties of individual snow crystals, which have a variety of shapes and sizes, and are often bounded in clusters. From the point of view of optical modelling, it is essential to identify the geometric dimensions of the population of snow particles that synthesize the scattering properties of the snowpack surface. This involves challenges related to the complexity of modelling the radiative transfer in such an irregular medium, and to the difficulty of measuring microphysical snow properties. In this paper, we illustrate a method to measure the size distribution of a snow particle parameter, which roughly corresponds to the smallest snow particle dimension, from two-dimensional macro photos of snow particles taken in Antarctica at the surface layer of a melting ice sheet. We demonstrate that this snow particle metric corresponds well to the optically equivalent effective radius utilized in radiative transfer modelling, in particular when snow particles are modelled with the droxtal shape. The surface albedo modelled on the basis of the measured snow particle metric showed an excellent match with the observed albedo when there was fresh or drifted snow at the surface. In the other cases, a good match was present only for wavelengths longer than 1.4 μm. For shorter wavelengths, our modelled albedo generally overestimated the observations, in particular when surface hoar and faceted polycrystals were present at the surface and surface roughness was increased by millimetre-scale cavities generated during melting. Our results indicate that more than just one particle metric distribution is needed to characterize the snow scattering properties at all optical wavelengths, and suggest an impact of millimetre-scale surface roughness on the shortwave infrared albedo. Text Antarc* Antarctic Antarctica Ice Sheet Copernicus Publications: E-Journals Antarctic The Cryosphere 9 6 2357 2381
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The albedo of a snowpack depends on the single-scattering properties of individual snow crystals, which have a variety of shapes and sizes, and are often bounded in clusters. From the point of view of optical modelling, it is essential to identify the geometric dimensions of the population of snow particles that synthesize the scattering properties of the snowpack surface. This involves challenges related to the complexity of modelling the radiative transfer in such an irregular medium, and to the difficulty of measuring microphysical snow properties. In this paper, we illustrate a method to measure the size distribution of a snow particle parameter, which roughly corresponds to the smallest snow particle dimension, from two-dimensional macro photos of snow particles taken in Antarctica at the surface layer of a melting ice sheet. We demonstrate that this snow particle metric corresponds well to the optically equivalent effective radius utilized in radiative transfer modelling, in particular when snow particles are modelled with the droxtal shape. The surface albedo modelled on the basis of the measured snow particle metric showed an excellent match with the observed albedo when there was fresh or drifted snow at the surface. In the other cases, a good match was present only for wavelengths longer than 1.4 μm. For shorter wavelengths, our modelled albedo generally overestimated the observations, in particular when surface hoar and faceted polycrystals were present at the surface and surface roughness was increased by millimetre-scale cavities generated during melting. Our results indicate that more than just one particle metric distribution is needed to characterize the snow scattering properties at all optical wavelengths, and suggest an impact of millimetre-scale surface roughness on the shortwave infrared albedo.
format Text
author Pirazzini, R.
Räisänen, P.
Vihma, T.
Johansson, M.
Tastula, E.-M.
spellingShingle Pirazzini, R.
Räisänen, P.
Vihma, T.
Johansson, M.
Tastula, E.-M.
Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet
author_facet Pirazzini, R.
Räisänen, P.
Vihma, T.
Johansson, M.
Tastula, E.-M.
author_sort Pirazzini, R.
title Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet
title_short Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet
title_full Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet
title_fullStr Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet
title_full_unstemmed Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet
title_sort measurements and modelling of snow particle size and shortwave infrared albedo over a melting antarctic ice sheet
publishDate 2018
url https://doi.org/10.5194/tc-9-2357-2015
https://tc.copernicus.org/articles/9/2357/2015/
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
Antarctica
Ice Sheet
genre_facet Antarc*
Antarctic
Antarctica
Ice Sheet
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-9-2357-2015
https://tc.copernicus.org/articles/9/2357/2015/
op_doi https://doi.org/10.5194/tc-9-2357-2015
container_title The Cryosphere
container_volume 9
container_issue 6
container_start_page 2357
op_container_end_page 2381
_version_ 1766260346389004288