Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet

We present a new parameterisation that relates surface mass balance (SMB: the sum of surface accumulation and surface ablation) to changes in surface elevation of the Greenland ice sheet (GrIS) for the MAR (Modèle Atmosphérique Régional: Fettweis, 2007) regional climate model. The motivation is to d...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Edwards, T. L., Fettweis, X., Gagliardini, O., Gillet-Chaulet, F., Goelzer, H., Gregory, J. M., Hoffman, M., Huybrechts, P., Payne, A. J., Perego, M., Price, S., Quiquet, A., Ritz, C.
Format: Other/Unknown Material
Language:English
Published: 2018
Subjects:
Ela
Online Access:https://doi.org/10.5194/tc-8-181-2014
https://tc.copernicus.org/articles/8/181/2014/
id ftcopernicus:oai:publications.copernicus.org:tc18585
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:tc18585 2023-05-15T16:28:43+02:00 Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet Edwards, T. L. Fettweis, X. Gagliardini, O. Gillet-Chaulet, F. Goelzer, H. Gregory, J. M. Hoffman, M. Huybrechts, P. Payne, A. J. Perego, M. Price, S. Quiquet, A. Ritz, C. 2018-09-27 info:eu-repo/semantics/application/pdf https://doi.org/10.5194/tc-8-181-2014 https://tc.copernicus.org/articles/8/181/2014/ eng eng info:eu-repo/grantAgreement/EC/FP7/226375 doi:10.5194/tc-8-181-2014 https://tc.copernicus.org/articles/8/181/2014/ info:eu-repo/semantics/openAccess eISSN: 1994-0424 info:eu-repo/semantics/Text 2018 ftcopernicus https://doi.org/10.5194/tc-8-181-2014 2020-07-20T16:25:11Z We present a new parameterisation that relates surface mass balance (SMB: the sum of surface accumulation and surface ablation) to changes in surface elevation of the Greenland ice sheet (GrIS) for the MAR (Modèle Atmosphérique Régional: Fettweis, 2007) regional climate model. The motivation is to dynamically adjust SMB as the GrIS evolves, allowing us to force ice sheet models with SMB simulated by MAR while incorporating the SMB–elevation feedback, without the substantial technical challenges of coupling ice sheet and climate models. This also allows us to assess the effect of elevation feedback uncertainty on the GrIS contribution to sea level, using multiple global climate and ice sheet models, without the need for additional, expensive MAR simulations. We estimate this relationship separately below and above the equilibrium line altitude (ELA, separating negative and positive SMB) and for regions north and south of 77° N, from a set of MAR simulations in which we alter the ice sheet surface elevation. These give four "SMB lapse rates", gradients that relate SMB changes to elevation changes. We assess uncertainties within a Bayesian framework, estimating probability distributions for each gradient from which we present best estimates and credibility intervals (CI) that bound 95% of the probability. Below the ELA our gradient estimates are mostly positive, because SMB usually increases with elevation: 0.56 (95% CI: −0.22 to 1.33) kg m −3 a −1 for the north, and 1.91 (1.03 to 2.61) kg m −3 a −1 for the south. Above the ELA, the gradients are much smaller in magnitude: 0.09 (−0.03 to 0.23) kg m −3 a −1 in the north, and 0.07 (−0.07 to 0.59) kg m −3 a −1 in the south, because SMB can either increase or decrease in response to increased elevation. Our statistically founded approach allows us to make probabilistic assessments for the effect of elevation feedback uncertainty on sea level projections (Edwards et al., 2014). Other/Unknown Material Greenland Ice Sheet Copernicus Publications: E-Journals Ela ENVELOPE(9.642,9.642,63.170,63.170) Greenland The Cryosphere 8 1 181 194
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description We present a new parameterisation that relates surface mass balance (SMB: the sum of surface accumulation and surface ablation) to changes in surface elevation of the Greenland ice sheet (GrIS) for the MAR (Modèle Atmosphérique Régional: Fettweis, 2007) regional climate model. The motivation is to dynamically adjust SMB as the GrIS evolves, allowing us to force ice sheet models with SMB simulated by MAR while incorporating the SMB–elevation feedback, without the substantial technical challenges of coupling ice sheet and climate models. This also allows us to assess the effect of elevation feedback uncertainty on the GrIS contribution to sea level, using multiple global climate and ice sheet models, without the need for additional, expensive MAR simulations. We estimate this relationship separately below and above the equilibrium line altitude (ELA, separating negative and positive SMB) and for regions north and south of 77° N, from a set of MAR simulations in which we alter the ice sheet surface elevation. These give four "SMB lapse rates", gradients that relate SMB changes to elevation changes. We assess uncertainties within a Bayesian framework, estimating probability distributions for each gradient from which we present best estimates and credibility intervals (CI) that bound 95% of the probability. Below the ELA our gradient estimates are mostly positive, because SMB usually increases with elevation: 0.56 (95% CI: −0.22 to 1.33) kg m −3 a −1 for the north, and 1.91 (1.03 to 2.61) kg m −3 a −1 for the south. Above the ELA, the gradients are much smaller in magnitude: 0.09 (−0.03 to 0.23) kg m −3 a −1 in the north, and 0.07 (−0.07 to 0.59) kg m −3 a −1 in the south, because SMB can either increase or decrease in response to increased elevation. Our statistically founded approach allows us to make probabilistic assessments for the effect of elevation feedback uncertainty on sea level projections (Edwards et al., 2014).
format Other/Unknown Material
author Edwards, T. L.
Fettweis, X.
Gagliardini, O.
Gillet-Chaulet, F.
Goelzer, H.
Gregory, J. M.
Hoffman, M.
Huybrechts, P.
Payne, A. J.
Perego, M.
Price, S.
Quiquet, A.
Ritz, C.
spellingShingle Edwards, T. L.
Fettweis, X.
Gagliardini, O.
Gillet-Chaulet, F.
Goelzer, H.
Gregory, J. M.
Hoffman, M.
Huybrechts, P.
Payne, A. J.
Perego, M.
Price, S.
Quiquet, A.
Ritz, C.
Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet
author_facet Edwards, T. L.
Fettweis, X.
Gagliardini, O.
Gillet-Chaulet, F.
Goelzer, H.
Gregory, J. M.
Hoffman, M.
Huybrechts, P.
Payne, A. J.
Perego, M.
Price, S.
Quiquet, A.
Ritz, C.
author_sort Edwards, T. L.
title Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet
title_short Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet
title_full Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet
title_fullStr Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet
title_full_unstemmed Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet
title_sort probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the greenland ice sheet
publishDate 2018
url https://doi.org/10.5194/tc-8-181-2014
https://tc.copernicus.org/articles/8/181/2014/
long_lat ENVELOPE(9.642,9.642,63.170,63.170)
geographic Ela
Greenland
geographic_facet Ela
Greenland
genre Greenland
Ice Sheet
genre_facet Greenland
Ice Sheet
op_source eISSN: 1994-0424
op_relation info:eu-repo/grantAgreement/EC/FP7/226375
doi:10.5194/tc-8-181-2014
https://tc.copernicus.org/articles/8/181/2014/
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/tc-8-181-2014
container_title The Cryosphere
container_volume 8
container_issue 1
container_start_page 181
op_container_end_page 194
_version_ 1766018395171454976