Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska

The specific surface area (SSA) of the snow constitutes a powerful parameter to quantify the exchange of matter and energy between the snow and the atmosphere. However, currently no snow physics model can simulate the SSA. Therefore, two different types of empirical parameterizations of the specific...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Jacobi, H.-W., Domine, F., Simpson, W. R., Douglas, T. A., Sturm, M.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/tc-4-35-2010
https://tc.copernicus.org/articles/4/35/2010/
id ftcopernicus:oai:publications.copernicus.org:tc1439
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:tc1439 2023-05-15T18:28:17+02:00 Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska Jacobi, H.-W. Domine, F. Simpson, W. R. Douglas, T. A. Sturm, M. 2018-09-27 application/pdf https://doi.org/10.5194/tc-4-35-2010 https://tc.copernicus.org/articles/4/35/2010/ eng eng doi:10.5194/tc-4-35-2010 https://tc.copernicus.org/articles/4/35/2010/ eISSN: 1994-0424 Text 2018 ftcopernicus https://doi.org/10.5194/tc-4-35-2010 2020-07-20T16:26:29Z The specific surface area (SSA) of the snow constitutes a powerful parameter to quantify the exchange of matter and energy between the snow and the atmosphere. However, currently no snow physics model can simulate the SSA. Therefore, two different types of empirical parameterizations of the specific surface area (SSA) of snow are implemented into the existing one-dimensional snow physics model CROCUS. The parameterizations are either based on diagnostic equations relating the SSA to parameters like snow type and density or on prognostic equations that describe the change of SSA depending on snow age, snowpack temperature, and the temperature gradient within the snowpack. Simulations with the upgraded CROCUS model were performed for a subarctic snowpack, for which an extensive data set including SSA measurements is available at Fairbanks, Alaska for the winter season 2003/2004. While a reasonable agreement between simulated and observed SSA values is obtained using both parameterizations, the model tends to overestimate the SSA. This overestimation is more pronounced using the diagnostic equations compared to the results of the prognostic equations. Parts of the SSA deviations using both parameterizations can be attributed to differences between simulated and observed snow heights, densities, and temperatures. Therefore, further sensitivity studies regarding the thermal budget of the snowpack were performed. They revealed that reducing the thermal conductivity of the snow or increasing the turbulent fluxes at the snow surfaces leads to a slight improvement of the simulated thermal budget of the snowpack compared to the observations. However, their impact on further simulated parameters like snow height and SSA remains small. Including additional physical processes in the snow model may have the potential to advance the simulations of the thermal budget of the snowpack and, thus, the SSA simulations. Text Subarctic Alaska Copernicus Publications: E-Journals Fairbanks The Cryosphere 4 1 35 51
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The specific surface area (SSA) of the snow constitutes a powerful parameter to quantify the exchange of matter and energy between the snow and the atmosphere. However, currently no snow physics model can simulate the SSA. Therefore, two different types of empirical parameterizations of the specific surface area (SSA) of snow are implemented into the existing one-dimensional snow physics model CROCUS. The parameterizations are either based on diagnostic equations relating the SSA to parameters like snow type and density or on prognostic equations that describe the change of SSA depending on snow age, snowpack temperature, and the temperature gradient within the snowpack. Simulations with the upgraded CROCUS model were performed for a subarctic snowpack, for which an extensive data set including SSA measurements is available at Fairbanks, Alaska for the winter season 2003/2004. While a reasonable agreement between simulated and observed SSA values is obtained using both parameterizations, the model tends to overestimate the SSA. This overestimation is more pronounced using the diagnostic equations compared to the results of the prognostic equations. Parts of the SSA deviations using both parameterizations can be attributed to differences between simulated and observed snow heights, densities, and temperatures. Therefore, further sensitivity studies regarding the thermal budget of the snowpack were performed. They revealed that reducing the thermal conductivity of the snow or increasing the turbulent fluxes at the snow surfaces leads to a slight improvement of the simulated thermal budget of the snowpack compared to the observations. However, their impact on further simulated parameters like snow height and SSA remains small. Including additional physical processes in the snow model may have the potential to advance the simulations of the thermal budget of the snowpack and, thus, the SSA simulations.
format Text
author Jacobi, H.-W.
Domine, F.
Simpson, W. R.
Douglas, T. A.
Sturm, M.
spellingShingle Jacobi, H.-W.
Domine, F.
Simpson, W. R.
Douglas, T. A.
Sturm, M.
Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska
author_facet Jacobi, H.-W.
Domine, F.
Simpson, W. R.
Douglas, T. A.
Sturm, M.
author_sort Jacobi, H.-W.
title Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska
title_short Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska
title_full Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska
title_fullStr Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska
title_full_unstemmed Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska
title_sort simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in alaska
publishDate 2018
url https://doi.org/10.5194/tc-4-35-2010
https://tc.copernicus.org/articles/4/35/2010/
geographic Fairbanks
geographic_facet Fairbanks
genre Subarctic
Alaska
genre_facet Subarctic
Alaska
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-4-35-2010
https://tc.copernicus.org/articles/4/35/2010/
op_doi https://doi.org/10.5194/tc-4-35-2010
container_title The Cryosphere
container_volume 4
container_issue 1
container_start_page 35
op_container_end_page 51
_version_ 1766210691534946304