Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet

Rising sea levels and increased surface melting of the Greenland ice sheet have heightened the need for direct observations of meltwater release from the ice edge to ocean. Buoyant sediment plumes that develop in fjords downstream of outlet glaciers are controlled by numerous factors, including melt...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Chu, V. W., Smith, L. C., Rennermalm, A. K., Forster, R. R., Box, J. E.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/tc-6-1-2012
https://tc.copernicus.org/articles/6/1/2012/
Description
Summary:Rising sea levels and increased surface melting of the Greenland ice sheet have heightened the need for direct observations of meltwater release from the ice edge to ocean. Buoyant sediment plumes that develop in fjords downstream of outlet glaciers are controlled by numerous factors, including meltwater runoff. Here, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery is used to average surface suspended sediment concentration (SSC) in fjords around ∼80% of Greenland from 2000–2009. Spatial and temporal patterns in SSC are compared with positive-degree-days (PDD), a proxy for surface melting, from the Polar MM5 regional climate model. Over this decade significant geographic covariance occurred between ice sheet PDD and fjord SSC, with outlet type (land- vs. marine-terminating glaciers) also important. In general, high SSC is associated with high PDD and/or a high proportion of land-terminating glaciers. Unlike previous site-specific studies of the Watson River plume at Kangerlussuaq, temporal covariance is low, suggesting that plume dimensions best capture interannual runoff dynamics whereas SSC allows assessment of meltwater signals across much broader fjord environments around the ice sheet. Remote sensing of both plume characteristics thus offers a viable approach for observing spatial and temporal patterns of meltwater release from the Greenland ice sheet to the global ocean.