Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods

The Batagay megaslump, a permafrost thaw feature in north-eastern Siberia, provides access to ancient permafrost up to ∼650 kyr old. We aimed to assess the permafrost-locked organic matter (OM) quality and to deduce palaeo-environmental information on glacial–interglacial timescales. We sampled five...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Jongejans, Loeka L., Mangelsdorf, Kai, Karger, Cornelia, Opel, Thomas, Wetterich, Sebastian, Courtin, Jérémy, Meyer, Hanno, Kizyakov, Alexander I., Grosse, Guido, Shepelev, Andrei G., Syromyatnikov, Igor I., Fedorov, Alexander N., Strauss, Jens
Format: Text
Language:English
Published: 2022
Subjects:
Ice
Online Access:https://doi.org/10.5194/tc-16-3601-2022
https://tc.copernicus.org/articles/16/3601/2022/
id ftcopernicus:oai:publications.copernicus.org:tc100893
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:tc100893 2023-05-15T16:36:44+02:00 Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods Jongejans, Loeka L. Mangelsdorf, Kai Karger, Cornelia Opel, Thomas Wetterich, Sebastian Courtin, Jérémy Meyer, Hanno Kizyakov, Alexander I. Grosse, Guido Shepelev, Andrei G. Syromyatnikov, Igor I. Fedorov, Alexander N. Strauss, Jens 2022-09-08 application/pdf https://doi.org/10.5194/tc-16-3601-2022 https://tc.copernicus.org/articles/16/3601/2022/ eng eng doi:10.5194/tc-16-3601-2022 https://tc.copernicus.org/articles/16/3601/2022/ eISSN: 1994-0424 Text 2022 ftcopernicus https://doi.org/10.5194/tc-16-3601-2022 2022-09-12T16:22:53Z The Batagay megaslump, a permafrost thaw feature in north-eastern Siberia, provides access to ancient permafrost up to ∼650 kyr old. We aimed to assess the permafrost-locked organic matter (OM) quality and to deduce palaeo-environmental information on glacial–interglacial timescales. We sampled five stratigraphic units exposed on the 55 m high slump headwall and analysed lipid biomarkers (alkanes, fatty acids and alcohols). Our findings revealed similar biogeochemical signatures for the glacial periods: the lower ice complex (Marine Isotope Stage (MIS) 16 or earlier), the lower sand unit (sometime between MIS 16–6) and the upper ice complex (MIS 4–2). The OM in these units has a terrestrial character, and microbial activity was likely limited. Contrarily, the n -alkane and fatty acid distributions differed for the units from interglacial periods: the woody layer (MIS 5), separating the lower sand unit and the upper ice complex, and the Holocene cover (MIS 1), on top of the upper ice complex. The woody layer, marking a permafrost degradation disconformity, contained markers of terrestrial origin (sterols) and high microbial decomposition ( iso - and anteiso -fatty acids). In the Holocene cover, biomarkers pointed to wet depositional conditions and we identified branched and cyclic alkanes, which are likely of microbial origin. Higher OM decomposition characterised the interglacial periods. As climate warming will continue permafrost degradation in the Batagay megaslump and in other areas, large amounts of deeply buried ancient OM with variable composition and degradability are mobilised, likely significantly enhancing greenhouse gas emissions from permafrost regions. Text Ice permafrost Siberia Copernicus Publications: E-Journals The Cryosphere 16 9 3601 3617
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The Batagay megaslump, a permafrost thaw feature in north-eastern Siberia, provides access to ancient permafrost up to ∼650 kyr old. We aimed to assess the permafrost-locked organic matter (OM) quality and to deduce palaeo-environmental information on glacial–interglacial timescales. We sampled five stratigraphic units exposed on the 55 m high slump headwall and analysed lipid biomarkers (alkanes, fatty acids and alcohols). Our findings revealed similar biogeochemical signatures for the glacial periods: the lower ice complex (Marine Isotope Stage (MIS) 16 or earlier), the lower sand unit (sometime between MIS 16–6) and the upper ice complex (MIS 4–2). The OM in these units has a terrestrial character, and microbial activity was likely limited. Contrarily, the n -alkane and fatty acid distributions differed for the units from interglacial periods: the woody layer (MIS 5), separating the lower sand unit and the upper ice complex, and the Holocene cover (MIS 1), on top of the upper ice complex. The woody layer, marking a permafrost degradation disconformity, contained markers of terrestrial origin (sterols) and high microbial decomposition ( iso - and anteiso -fatty acids). In the Holocene cover, biomarkers pointed to wet depositional conditions and we identified branched and cyclic alkanes, which are likely of microbial origin. Higher OM decomposition characterised the interglacial periods. As climate warming will continue permafrost degradation in the Batagay megaslump and in other areas, large amounts of deeply buried ancient OM with variable composition and degradability are mobilised, likely significantly enhancing greenhouse gas emissions from permafrost regions.
format Text
author Jongejans, Loeka L.
Mangelsdorf, Kai
Karger, Cornelia
Opel, Thomas
Wetterich, Sebastian
Courtin, Jérémy
Meyer, Hanno
Kizyakov, Alexander I.
Grosse, Guido
Shepelev, Andrei G.
Syromyatnikov, Igor I.
Fedorov, Alexander N.
Strauss, Jens
spellingShingle Jongejans, Loeka L.
Mangelsdorf, Kai
Karger, Cornelia
Opel, Thomas
Wetterich, Sebastian
Courtin, Jérémy
Meyer, Hanno
Kizyakov, Alexander I.
Grosse, Guido
Shepelev, Andrei G.
Syromyatnikov, Igor I.
Fedorov, Alexander N.
Strauss, Jens
Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods
author_facet Jongejans, Loeka L.
Mangelsdorf, Kai
Karger, Cornelia
Opel, Thomas
Wetterich, Sebastian
Courtin, Jérémy
Meyer, Hanno
Kizyakov, Alexander I.
Grosse, Guido
Shepelev, Andrei G.
Syromyatnikov, Igor I.
Fedorov, Alexander N.
Strauss, Jens
author_sort Jongejans, Loeka L.
title Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods
title_short Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods
title_full Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods
title_fullStr Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods
title_full_unstemmed Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods
title_sort molecular biomarkers in batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods
publishDate 2022
url https://doi.org/10.5194/tc-16-3601-2022
https://tc.copernicus.org/articles/16/3601/2022/
genre Ice
permafrost
Siberia
genre_facet Ice
permafrost
Siberia
op_source eISSN: 1994-0424
op_relation doi:10.5194/tc-16-3601-2022
https://tc.copernicus.org/articles/16/3601/2022/
op_doi https://doi.org/10.5194/tc-16-3601-2022
container_title The Cryosphere
container_volume 16
container_issue 9
container_start_page 3601
op_container_end_page 3617
_version_ 1766027059656654848