GROUND PENETRATING RADAR DATA INTERPRETATION USING ELECTROMAGNETIC FIELD ANALYSIS FOR SEA ICE THICKNESS MEASUREMENT
Observation of sea ice thickness by remote sensing is one of key issues to understand an effect of global warming. However, ground truth must be necessary to discuss this kind of approach. Although there are several methods to acquire ice thickness, Ground Penetrating Radar (GPR) can be good solutio...
Published in: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
---|---|
Main Authors: | , , , , |
Format: | Text |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://doi.org/10.5194/isprs-archives-XLII-3-W7-47-2019 https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W7/47/2019/ |
id |
ftcopernicus:oai:publications.copernicus.org:isprs-archives74965 |
---|---|
record_format |
openpolar |
spelling |
ftcopernicus:oai:publications.copernicus.org:isprs-archives74965 2023-05-15T18:17:34+02:00 GROUND PENETRATING RADAR DATA INTERPRETATION USING ELECTROMAGNETIC FIELD ANALYSIS FOR SEA ICE THICKNESS MEASUREMENT Matsumoto, M. Yoshimura, M. Naoki, K. Cho, K. Wakabayashi, H. 2019-02-28 application/pdf https://doi.org/10.5194/isprs-archives-XLII-3-W7-47-2019 https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W7/47/2019/ eng eng doi:10.5194/isprs-archives-XLII-3-W7-47-2019 https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W7/47/2019/ eISSN: 2194-9034 Text 2019 ftcopernicus https://doi.org/10.5194/isprs-archives-XLII-3-W7-47-2019 2019-12-24T09:49:25Z Observation of sea ice thickness by remote sensing is one of key issues to understand an effect of global warming. However, ground truth must be necessary to discuss this kind of approach. Although there are several methods to acquire ice thickness, Ground Penetrating Radar (GPR) can be good solution because it can discriminate snow-ice and ice-sea water interface thanks to comparative higher spatial resolution than the other methods. In this paper, we carried out GPR measurement in brackish lake and an electromagnetic field analysis in order to interpret the GPR data. The simulation model was assumed considering the actual snow and ice thickness acquired in field measurement. From the simulation results, although it seems difficult to identify the reflection at snow and ice interface due to a thin layer thickness and a low dielectric constant, snow and ice thickness may be estimated by using multiple reflection components. Text Sea ice Copernicus Publications: E-Journals The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W7 47 50 |
institution |
Open Polar |
collection |
Copernicus Publications: E-Journals |
op_collection_id |
ftcopernicus |
language |
English |
description |
Observation of sea ice thickness by remote sensing is one of key issues to understand an effect of global warming. However, ground truth must be necessary to discuss this kind of approach. Although there are several methods to acquire ice thickness, Ground Penetrating Radar (GPR) can be good solution because it can discriminate snow-ice and ice-sea water interface thanks to comparative higher spatial resolution than the other methods. In this paper, we carried out GPR measurement in brackish lake and an electromagnetic field analysis in order to interpret the GPR data. The simulation model was assumed considering the actual snow and ice thickness acquired in field measurement. From the simulation results, although it seems difficult to identify the reflection at snow and ice interface due to a thin layer thickness and a low dielectric constant, snow and ice thickness may be estimated by using multiple reflection components. |
format |
Text |
author |
Matsumoto, M. Yoshimura, M. Naoki, K. Cho, K. Wakabayashi, H. |
spellingShingle |
Matsumoto, M. Yoshimura, M. Naoki, K. Cho, K. Wakabayashi, H. GROUND PENETRATING RADAR DATA INTERPRETATION USING ELECTROMAGNETIC FIELD ANALYSIS FOR SEA ICE THICKNESS MEASUREMENT |
author_facet |
Matsumoto, M. Yoshimura, M. Naoki, K. Cho, K. Wakabayashi, H. |
author_sort |
Matsumoto, M. |
title |
GROUND PENETRATING RADAR DATA INTERPRETATION USING ELECTROMAGNETIC FIELD ANALYSIS FOR SEA ICE THICKNESS MEASUREMENT |
title_short |
GROUND PENETRATING RADAR DATA INTERPRETATION USING ELECTROMAGNETIC FIELD ANALYSIS FOR SEA ICE THICKNESS MEASUREMENT |
title_full |
GROUND PENETRATING RADAR DATA INTERPRETATION USING ELECTROMAGNETIC FIELD ANALYSIS FOR SEA ICE THICKNESS MEASUREMENT |
title_fullStr |
GROUND PENETRATING RADAR DATA INTERPRETATION USING ELECTROMAGNETIC FIELD ANALYSIS FOR SEA ICE THICKNESS MEASUREMENT |
title_full_unstemmed |
GROUND PENETRATING RADAR DATA INTERPRETATION USING ELECTROMAGNETIC FIELD ANALYSIS FOR SEA ICE THICKNESS MEASUREMENT |
title_sort |
ground penetrating radar data interpretation using electromagnetic field analysis for sea ice thickness measurement |
publishDate |
2019 |
url |
https://doi.org/10.5194/isprs-archives-XLII-3-W7-47-2019 https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W7/47/2019/ |
genre |
Sea ice |
genre_facet |
Sea ice |
op_source |
eISSN: 2194-9034 |
op_relation |
doi:10.5194/isprs-archives-XLII-3-W7-47-2019 https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W7/47/2019/ |
op_doi |
https://doi.org/10.5194/isprs-archives-XLII-3-W7-47-2019 |
container_title |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
container_volume |
XLII-3/W7 |
container_start_page |
47 |
op_container_end_page |
50 |
_version_ |
1766191921747722240 |