Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula

There are only a small number of recent publications discussing glacial runoff in Antarctica, and even fewer of them deal with the groundwater flow discharge. This paper focuses on the groundwater flow aspects and is based on a detailed study performed on a small hydrological catchment, informally c...

Full description

Bibliographic Details
Published in:Hydrology and Earth System Sciences
Main Authors: Falk, Ulrike, Silva-Busso, Adrián
Format: Other/Unknown Material
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/hess-25-3227-2021
https://hess.copernicus.org/articles/25/3227/2021/
id ftcopernicus:oai:publications.copernicus.org:hess88693
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description There are only a small number of recent publications discussing glacial runoff in Antarctica, and even fewer of them deal with the groundwater flow discharge. This paper focuses on the groundwater flow aspects and is based on a detailed study performed on a small hydrological catchment, informally called Potter basin, located on King George Island (KGI; Isla 25 de Mayo), South Shetland Islands, at the northern tip of the Antarctic Peninsula. The basin is representative for the rugged coastline of the northern Antarctic Peninsula and is discussed as a case study for the possible future evolution of similar basins further to the south. A conceptual hydrogeological model has been defined using vertical electrical soundings (VESs), geological and hydrogeological surveying methods, geomorphological interpretation based on satellite imagery, permeability tests, piezometric level measurements, meteorological, geocryological and glaciological data sets. The transmissivities of the fluvial talik aquifer and suprapermafrost aquifer range from 162.0 to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">2719.9</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="40665a9f8679e57366a84e2eae168d57"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-3227-2021-ie00001.svg" width="69pt" height="13pt" src="hess-25-3227-2021-ie00001.png"/></svg:svg> m 2 s −1 and in basaltic fissured aquifers from 3.47 to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">5.79</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="57pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="8e48a915c3d5b0028347cc7a31020a8a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-3227-2021-ie00002.svg" width="57pt" height="13pt" src="hess-25-3227-2021-ie00002.png"/></svg:svg> m 2 s −1 . The transmissivities found in the active layer of hummocky moraines amount to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">75.23</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="63pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="ca3421bc4218e02da11d3e6cb88e0864"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-3227-2021-ie00003.svg" width="63pt" height="13pt" src="hess-25-3227-2021-ie00003.png"/></svg:svg> m 2 s −1 and to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">163.0</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="63pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="37f41eb00012ee6116950aa2a768909e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-3227-2021-ie00004.svg" width="63pt" height="13pt" src="hess-25-3227-2021-ie00004.png"/></svg:svg> m 2 s −1 in the sea deposits, and in the fluvioglacial deposits, they were observed between 902.8 and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">2662.0</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="84a4bf5df0e40d4cc91ffb58d4cbc750"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-3227-2021-ie00005.svg" width="69pt" height="13pt" src="hess-25-3227-2021-ie00005.png"/></svg:svg> m 2 d −1 . Finally, the groundwater flow discharge was assessed to 0.47 m 3 s −1 (during the austral summer months of January and February), and the total groundwater storage was estimated to 560×10 3 m 3 . The Antarctic Peninsula region has experienced drastic climatological changes within the past five decades. Under the Intergovernmental Panel on Climate Change scenarios, a further warming of the polar regions can be expected as polar amplification of our changing climate. Although the basin in consideration is small and results are valid only during austral summers with surface air temperatures above the freezing point, it serves as model study that can be regarded as representative for the western coastline of the Antarctic Peninsula further south under expected future warming, with surface air temperatures periodically surpassing freezing point. This data can be used to adjust glacial mass balance assessments in the region and to improve the understanding of coastal sea water processes, and their effects on the marine biota, as a consequence of the global climate change.
format Other/Unknown Material
author Falk, Ulrike
Silva-Busso, Adrián
spellingShingle Falk, Ulrike
Silva-Busso, Adrián
Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula
author_facet Falk, Ulrike
Silva-Busso, Adrián
author_sort Falk, Ulrike
title Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula
title_short Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula
title_full Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula
title_fullStr Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula
title_full_unstemmed Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula
title_sort discharge of groundwater flow to potter cove on king george island, antarctic peninsula
publishDate 2021
url https://doi.org/10.5194/hess-25-3227-2021
https://hess.copernicus.org/articles/25/3227/2021/
long_lat ENVELOPE(-58.000,-58.000,-62.083,-62.083)
ENVELOPE(-65.133,-65.133,-67.200,-67.200)
ENVELOPE(-58.000,-58.000,-62.083,-62.083)
ENVELOPE(146.601,146.601,59.667,59.667)
geographic 25 de Mayo
Antarctic
Antarctic Peninsula
Austral
Hess
isla 25 de Mayo
King George Island
Potter Cove
South Shetland Islands
Talik
The Antarctic
geographic_facet 25 de Mayo
Antarctic
Antarctic Peninsula
Austral
Hess
isla 25 de Mayo
King George Island
Potter Cove
South Shetland Islands
Talik
The Antarctic
genre Antarc*
Antarctic
Antarctic Peninsula
Antarctica
Isla 25 de Mayo
King George Island
South Shetland Islands
Talik
genre_facet Antarc*
Antarctic
Antarctic Peninsula
Antarctica
Isla 25 de Mayo
King George Island
South Shetland Islands
Talik
op_source eISSN: 1607-7938
op_relation info:eu-repo/grantAgreement/EC/FP7/318718
doi:10.5194/hess-25-3227-2021
https://hess.copernicus.org/articles/25/3227/2021/
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/hess-25-3227-2021
container_title Hydrology and Earth System Sciences
container_volume 25
container_issue 6
container_start_page 3227
op_container_end_page 3244
_version_ 1766272445558292480
spelling ftcopernicus:oai:publications.copernicus.org:hess88693 2023-05-15T14:02:17+02:00 Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula Falk, Ulrike Silva-Busso, Adrián 2021-06-14 info:eu-repo/semantics/application/pdf https://doi.org/10.5194/hess-25-3227-2021 https://hess.copernicus.org/articles/25/3227/2021/ eng eng info:eu-repo/grantAgreement/EC/FP7/318718 doi:10.5194/hess-25-3227-2021 https://hess.copernicus.org/articles/25/3227/2021/ info:eu-repo/semantics/openAccess eISSN: 1607-7938 info:eu-repo/semantics/Text 2021 ftcopernicus https://doi.org/10.5194/hess-25-3227-2021 2021-06-21T16:22:17Z There are only a small number of recent publications discussing glacial runoff in Antarctica, and even fewer of them deal with the groundwater flow discharge. This paper focuses on the groundwater flow aspects and is based on a detailed study performed on a small hydrological catchment, informally called Potter basin, located on King George Island (KGI; Isla 25 de Mayo), South Shetland Islands, at the northern tip of the Antarctic Peninsula. The basin is representative for the rugged coastline of the northern Antarctic Peninsula and is discussed as a case study for the possible future evolution of similar basins further to the south. A conceptual hydrogeological model has been defined using vertical electrical soundings (VESs), geological and hydrogeological surveying methods, geomorphological interpretation based on satellite imagery, permeability tests, piezometric level measurements, meteorological, geocryological and glaciological data sets. The transmissivities of the fluvial talik aquifer and suprapermafrost aquifer range from 162.0 to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">2719.9</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="40665a9f8679e57366a84e2eae168d57"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-3227-2021-ie00001.svg" width="69pt" height="13pt" src="hess-25-3227-2021-ie00001.png"/></svg:svg> m 2 s −1 and in basaltic fissured aquifers from 3.47 to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">5.79</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="57pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="8e48a915c3d5b0028347cc7a31020a8a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-3227-2021-ie00002.svg" width="57pt" height="13pt" src="hess-25-3227-2021-ie00002.png"/></svg:svg> m 2 s −1 . The transmissivities found in the active layer of hummocky moraines amount to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">75.23</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="63pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="ca3421bc4218e02da11d3e6cb88e0864"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-3227-2021-ie00003.svg" width="63pt" height="13pt" src="hess-25-3227-2021-ie00003.png"/></svg:svg> m 2 s −1 and to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">163.0</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="63pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="37f41eb00012ee6116950aa2a768909e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-3227-2021-ie00004.svg" width="63pt" height="13pt" src="hess-25-3227-2021-ie00004.png"/></svg:svg> m 2 s −1 in the sea deposits, and in the fluvioglacial deposits, they were observed between 902.8 and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">2662.0</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="84a4bf5df0e40d4cc91ffb58d4cbc750"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-3227-2021-ie00005.svg" width="69pt" height="13pt" src="hess-25-3227-2021-ie00005.png"/></svg:svg> m 2 d −1 . Finally, the groundwater flow discharge was assessed to 0.47 m 3 s −1 (during the austral summer months of January and February), and the total groundwater storage was estimated to 560×10 3 m 3 . The Antarctic Peninsula region has experienced drastic climatological changes within the past five decades. Under the Intergovernmental Panel on Climate Change scenarios, a further warming of the polar regions can be expected as polar amplification of our changing climate. Although the basin in consideration is small and results are valid only during austral summers with surface air temperatures above the freezing point, it serves as model study that can be regarded as representative for the western coastline of the Antarctic Peninsula further south under expected future warming, with surface air temperatures periodically surpassing freezing point. This data can be used to adjust glacial mass balance assessments in the region and to improve the understanding of coastal sea water processes, and their effects on the marine biota, as a consequence of the global climate change. Other/Unknown Material Antarc* Antarctic Antarctic Peninsula Antarctica Isla 25 de Mayo King George Island South Shetland Islands Talik Copernicus Publications: E-Journals 25 de Mayo ENVELOPE(-58.000,-58.000,-62.083,-62.083) Antarctic Antarctic Peninsula Austral Hess ENVELOPE(-65.133,-65.133,-67.200,-67.200) isla 25 de Mayo ENVELOPE(-58.000,-58.000,-62.083,-62.083) King George Island Potter Cove South Shetland Islands Talik ENVELOPE(146.601,146.601,59.667,59.667) The Antarctic Hydrology and Earth System Sciences 25 6 3227 3244