A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing

A 2600-year long composite palaeoflood record is reconstructed from high-resolution delta plain sediments of the Hasli–Aare floodplain on the northern slope of the Swiss Alps. Natural proxies compiled from sedimentary, geochemical and geomorphological data were calibrated by textual and factual sour...

Full description

Bibliographic Details
Published in:Hydrology and Earth System Sciences
Main Authors: Schulte, L., Peña, J. C., Carvalho, F., Schmidt, T., Julià, R., Llorca, J., Veit, H.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/hess-19-3047-2015
https://www.hydrol-earth-syst-sci.net/19/3047/2015/
id ftcopernicus:oai:publications.copernicus.org:hess29313
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:hess29313 2023-05-15T17:32:34+02:00 A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing Schulte, L. Peña, J. C. Carvalho, F. Schmidt, T. Julià, R. Llorca, J. Veit, H. 2018-09-27 application/pdf https://doi.org/10.5194/hess-19-3047-2015 https://www.hydrol-earth-syst-sci.net/19/3047/2015/ eng eng doi:10.5194/hess-19-3047-2015 https://www.hydrol-earth-syst-sci.net/19/3047/2015/ eISSN: 1607-7938 Text 2018 ftcopernicus https://doi.org/10.5194/hess-19-3047-2015 2019-12-24T09:53:19Z A 2600-year long composite palaeoflood record is reconstructed from high-resolution delta plain sediments of the Hasli–Aare floodplain on the northern slope of the Swiss Alps. Natural proxies compiled from sedimentary, geochemical and geomorphological data were calibrated by textual and factual sources and instrumental data. No fewer than 12 of the 14 historically recorded extreme events between 1480 and the termination of the Hasli–Aare river channel correction in 1875 were also identified by coarse-grained flood layers, log(Zr / Ti) peaks and factor 1 anomalies. Geomorphological, historical and instrumental data provide evidence for flood damage intensities and discharge estimations of severe and catastrophic historical floods. Spectral analysis of the geochemical and documentary flood series and several climate proxies (TSI, δ 18 O, tree-rings, NAO, SNAO) identify similar periodicities of around 60, 80, 100, 120 and 200 years during the last millennia, indicating the influence of the North Atlantic circulation and solar forcing on alpine flood dynamics. The composite floodplain record illustrates that periods of organic soil formation and deposition of phyllosilicates (from the medium high catchment area) match those of total solar irradiance maxima, suggesting reduced flood activity during warmer climate pulses. Aggradation with multiple sets of flood layers with increased contribution of siliciclasts from the highest catchment area (plutonic bedrock) (e.g. 1300–1350, 1420–1480, 1550–1620, 1650–1720 and 1811–1851 cal yr AD) occurred predominantly during periods with reduced solar irradiance, lower δ 18 O anomalies, cooler summer temperatures and phases of drier spring climate in the Alps. Increased water storage by glaciers, snow cover and snow patches susceptible to melting processes associated with rainfall episodes and abrupt rises in temperature substantially increased surface runoff on slopes and discharges of alpine rivers. This interpretation is in agreement with the findings that the severe and catastrophic historical floods in the Aare since 1670 occurred mostly during positive SNAO (Summer North Atlantic Oscillation) pulses after years or even decades dominated by negative SNAO and cooler annual temperatures. Text North Atlantic North Atlantic oscillation Copernicus Publications: E-Journals Hydrology and Earth System Sciences 19 7 3047 3072
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description A 2600-year long composite palaeoflood record is reconstructed from high-resolution delta plain sediments of the Hasli–Aare floodplain on the northern slope of the Swiss Alps. Natural proxies compiled from sedimentary, geochemical and geomorphological data were calibrated by textual and factual sources and instrumental data. No fewer than 12 of the 14 historically recorded extreme events between 1480 and the termination of the Hasli–Aare river channel correction in 1875 were also identified by coarse-grained flood layers, log(Zr / Ti) peaks and factor 1 anomalies. Geomorphological, historical and instrumental data provide evidence for flood damage intensities and discharge estimations of severe and catastrophic historical floods. Spectral analysis of the geochemical and documentary flood series and several climate proxies (TSI, δ 18 O, tree-rings, NAO, SNAO) identify similar periodicities of around 60, 80, 100, 120 and 200 years during the last millennia, indicating the influence of the North Atlantic circulation and solar forcing on alpine flood dynamics. The composite floodplain record illustrates that periods of organic soil formation and deposition of phyllosilicates (from the medium high catchment area) match those of total solar irradiance maxima, suggesting reduced flood activity during warmer climate pulses. Aggradation with multiple sets of flood layers with increased contribution of siliciclasts from the highest catchment area (plutonic bedrock) (e.g. 1300–1350, 1420–1480, 1550–1620, 1650–1720 and 1811–1851 cal yr AD) occurred predominantly during periods with reduced solar irradiance, lower δ 18 O anomalies, cooler summer temperatures and phases of drier spring climate in the Alps. Increased water storage by glaciers, snow cover and snow patches susceptible to melting processes associated with rainfall episodes and abrupt rises in temperature substantially increased surface runoff on slopes and discharges of alpine rivers. This interpretation is in agreement with the findings that the severe and catastrophic historical floods in the Aare since 1670 occurred mostly during positive SNAO (Summer North Atlantic Oscillation) pulses after years or even decades dominated by negative SNAO and cooler annual temperatures.
format Text
author Schulte, L.
Peña, J. C.
Carvalho, F.
Schmidt, T.
Julià, R.
Llorca, J.
Veit, H.
spellingShingle Schulte, L.
Peña, J. C.
Carvalho, F.
Schmidt, T.
Julià, R.
Llorca, J.
Veit, H.
A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing
author_facet Schulte, L.
Peña, J. C.
Carvalho, F.
Schmidt, T.
Julià, R.
Llorca, J.
Veit, H.
author_sort Schulte, L.
title A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing
title_short A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing
title_full A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing
title_fullStr A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing
title_full_unstemmed A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing
title_sort 2600-year history of floods in the bernese alps, switzerland: frequencies, mechanisms and climate forcing
publishDate 2018
url https://doi.org/10.5194/hess-19-3047-2015
https://www.hydrol-earth-syst-sci.net/19/3047/2015/
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_source eISSN: 1607-7938
op_relation doi:10.5194/hess-19-3047-2015
https://www.hydrol-earth-syst-sci.net/19/3047/2015/
op_doi https://doi.org/10.5194/hess-19-3047-2015
container_title Hydrology and Earth System Sciences
container_volume 19
container_issue 7
container_start_page 3047
op_container_end_page 3072
_version_ 1766130753517649920