An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3
Physical processes within geoscientific models are sometimes described by simplified schemes known as parameterisations. The values of the parameters within these schemes can be poorly constrained by theory or observation. Uncertainty in the parameter values translates into uncertainty in the output...
Published in: | Geoscientific Model Development |
---|---|
Main Authors: | , , |
Format: | Text |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://doi.org/10.5194/gmd-14-5107-2021 https://gmd.copernicus.org/articles/14/5107/2021/ |
id |
ftcopernicus:oai:publications.copernicus.org:gmd91124 |
---|---|
record_format |
openpolar |
spelling |
ftcopernicus:oai:publications.copernicus.org:gmd91124 2023-05-15T14:02:17+02:00 An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3 Phipps, Steven J. Roberts, Jason L. King, Matt A. 2021-08-17 application/pdf https://doi.org/10.5194/gmd-14-5107-2021 https://gmd.copernicus.org/articles/14/5107/2021/ eng eng doi:10.5194/gmd-14-5107-2021 https://gmd.copernicus.org/articles/14/5107/2021/ eISSN: 1991-9603 Text 2021 ftcopernicus https://doi.org/10.5194/gmd-14-5107-2021 2021-08-23T16:22:29Z Physical processes within geoscientific models are sometimes described by simplified schemes known as parameterisations. The values of the parameters within these schemes can be poorly constrained by theory or observation. Uncertainty in the parameter values translates into uncertainty in the outputs of the models. Proper quantification of the uncertainty in model predictions therefore requires a systematic approach for sampling parameter space. In this study, we develop a simple and efficient approach to identify regions of multi-dimensional parameter space that are consistent with observations. Using the Parallel Ice Sheet Model to simulate the present-day state of the Antarctic Ice Sheet, we find that co-dependencies between parameters preclude any simple identification of a single optimal set of parameter values. Approaches such as large ensemble modelling are therefore required in order to generate model predictions that incorporate proper quantification of the uncertainty arising from the parameterisation of physical processes. Text Antarc* Antarctic Ice Sheet Copernicus Publications: E-Journals Antarctic The Antarctic Geoscientific Model Development 14 8 5107 5124 |
institution |
Open Polar |
collection |
Copernicus Publications: E-Journals |
op_collection_id |
ftcopernicus |
language |
English |
description |
Physical processes within geoscientific models are sometimes described by simplified schemes known as parameterisations. The values of the parameters within these schemes can be poorly constrained by theory or observation. Uncertainty in the parameter values translates into uncertainty in the outputs of the models. Proper quantification of the uncertainty in model predictions therefore requires a systematic approach for sampling parameter space. In this study, we develop a simple and efficient approach to identify regions of multi-dimensional parameter space that are consistent with observations. Using the Parallel Ice Sheet Model to simulate the present-day state of the Antarctic Ice Sheet, we find that co-dependencies between parameters preclude any simple identification of a single optimal set of parameter values. Approaches such as large ensemble modelling are therefore required in order to generate model predictions that incorporate proper quantification of the uncertainty arising from the parameterisation of physical processes. |
format |
Text |
author |
Phipps, Steven J. Roberts, Jason L. King, Matt A. |
spellingShingle |
Phipps, Steven J. Roberts, Jason L. King, Matt A. An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3 |
author_facet |
Phipps, Steven J. Roberts, Jason L. King, Matt A. |
author_sort |
Phipps, Steven J. |
title |
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3 |
title_short |
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3 |
title_full |
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3 |
title_fullStr |
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3 |
title_full_unstemmed |
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3 |
title_sort |
iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the parallel ice sheet model (pism) version 0.7.3 |
publishDate |
2021 |
url |
https://doi.org/10.5194/gmd-14-5107-2021 https://gmd.copernicus.org/articles/14/5107/2021/ |
geographic |
Antarctic The Antarctic |
geographic_facet |
Antarctic The Antarctic |
genre |
Antarc* Antarctic Ice Sheet |
genre_facet |
Antarc* Antarctic Ice Sheet |
op_source |
eISSN: 1991-9603 |
op_relation |
doi:10.5194/gmd-14-5107-2021 https://gmd.copernicus.org/articles/14/5107/2021/ |
op_doi |
https://doi.org/10.5194/gmd-14-5107-2021 |
container_title |
Geoscientific Model Development |
container_volume |
14 |
container_issue |
8 |
container_start_page |
5107 |
op_container_end_page |
5124 |
_version_ |
1766272457299197952 |