Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour

Uncertainties in projections of marine biogeochemistry from Earth system models (ESMs) are associated to a large degree with the imperfect representation of the marine plankton ecosystem, in particular the physiology of primary and secondary producers. Here, we describe the implementation of an opti...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: Pahlow, Markus, Chien, Chia-Te, Arteaga, Lionel A., Oschlies, Andreas
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/gmd-13-4663-2020
https://gmd.copernicus.org/articles/13/4663/2020/
id ftcopernicus:oai:publications.copernicus.org:gmd81652
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Uncertainties in projections of marine biogeochemistry from Earth system models (ESMs) are associated to a large degree with the imperfect representation of the marine plankton ecosystem, in particular the physiology of primary and secondary producers. Here, we describe the implementation of an optimality-based plankton–ecosystem model (OPEM) version 1.1 with variable carbon : nitrogen : phosphorus ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">C</mi><mo>:</mo><mi mathvariant="normal">N</mi><mo>:</mo><mi mathvariant="normal">P</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="41pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="89baeb1bef20dd832e5430c0fb7046a4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4663-2020-ie00001.svg" width="41pt" height="10pt" src="gmd-13-4663-2020-ie00001.png"/></svg:svg> ) stoichiometry in the University of Victoria ESM (UVic; Eby et al. , 2009 Weaver et al. , 2001 ) and the behaviour of two calibrated reference configurations, which differ in the assumed temperature dependence of diazotrophs. Predicted tracer distributions of oxygen and dissolved inorganic nutrients are similar to those of an earlier fixed-stoichiometry formulation in UVic ( Nickelsen et al. , 2015 ) . Compared to the classic fixed-stoichiometry UVic model, OPEM is closer to recent satellite-based estimates of net community production (NCP), despite overestimating net primary production (NPP), can better reproduce deep-ocean gradients in the <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup><mo>:</mo><msubsup><mi mathvariant="normal">PO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">3</mn><mo>-</mo></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="60pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="4a3a04c280c26f8bb86c29eb0da7aa02"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4663-2020-ie00002.svg" width="60pt" height="17pt" src="gmd-13-4663-2020-ie00002.png"/></svg:svg> ratio and partially explains observed patterns of particulate <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">C</mi><mo>:</mo><mi mathvariant="normal">N</mi><mo>:</mo><mi mathvariant="normal">P</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="41pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="149f8b236e29ab483fd2cd3ffa1df8f3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4663-2020-ie00003.svg" width="41pt" height="10pt" src="gmd-13-4663-2020-ie00003.png"/></svg:svg> in the surface ocean. Allowing diazotrophs to grow (but not necessarily fix N 2 ) at similar temperatures as other phytoplankton results in a better representation of surface Chl and NPP in the Arctic and Antarctic oceans. Deficiencies of our calibrated OPEM configurations may serve as a magnifying glass for shortcomings in global biogeochemical models and hence guide future model development. The overestimation of NPP at low latitudes indicates the need for improved representations of temperature effects on biotic processes, as well as phytoplankton community composition, which may be represented by locally varying parameters based on suitable trade-offs. The similarity in the overestimation of NPP and surface autotrophic particulate organic carbon (POC) could indicate deficiencies in the representation of top-down control or nutrient supply to the surface ocean. Discrepancies between observed and predicted vertical gradients in particulate <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">C</mi><mo>:</mo><mi mathvariant="normal">N</mi><mo>:</mo><mi mathvariant="normal">P</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="41pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="5278591e939f179feecd541d47d24aa4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4663-2020-ie00004.svg" width="41pt" height="10pt" src="gmd-13-4663-2020-ie00004.png"/></svg:svg> ratios suggest the need to include preferential P remineralisation, which could also benefit the representation of N 2 fixation. While OPEM yields a much improved distribution of surface N* ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow><mo>-</mo><mn mathvariant="normal">16</mn><mo>⋅</mo><mrow class="chem"><msubsup><mi mathvariant="normal">PO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">3</mn><mo>-</mo></mrow></msubsup></mrow><mo>+</mo><mn mathvariant="normal">2.9</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="107pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="7fd9b6d23e10a41bd76f3216e786309b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4663-2020-ie00005.svg" width="107pt" height="17pt" src="gmd-13-4663-2020-ie00005.png"/></svg:svg> mmol m −3 ), it still fails to reproduce observed N* in the Arctic, possibly related to a misrepresentation of the phytoplankton community there and the lack of benthic denitrification in the model. Coexisting ordinary and diazotrophic phytoplankton can exert strong control on N* in our simulations, which questions the interpretation of N* as reflecting the balance of N 2 fixation and denitrification.
format Text
author Pahlow, Markus
Chien, Chia-Te
Arteaga, Lionel A.
Oschlies, Andreas
spellingShingle Pahlow, Markus
Chien, Chia-Te
Arteaga, Lionel A.
Oschlies, Andreas
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour
author_facet Pahlow, Markus
Chien, Chia-Te
Arteaga, Lionel A.
Oschlies, Andreas
author_sort Pahlow, Markus
title Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour
title_short Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour
title_full Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour
title_fullStr Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour
title_full_unstemmed Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour
title_sort optimality-based non-redfield plankton–ecosystem model (opem v1.1) in uvic-escm 2.9 – part 1: implementation and model behaviour
publishDate 2020
url https://doi.org/10.5194/gmd-13-4663-2020
https://gmd.copernicus.org/articles/13/4663/2020/
long_lat ENVELOPE(-153.833,-153.833,-86.967,-86.967)
geographic Antarctic
Arctic
Weaver
geographic_facet Antarctic
Arctic
Weaver
genre Antarc*
Antarctic
Arctic
Phytoplankton
genre_facet Antarc*
Antarctic
Arctic
Phytoplankton
op_source eISSN: 1991-9603
op_relation doi:10.5194/gmd-13-4663-2020
https://gmd.copernicus.org/articles/13/4663/2020/
op_doi https://doi.org/10.5194/gmd-13-4663-2020
container_title Geoscientific Model Development
container_volume 13
container_issue 10
container_start_page 4663
op_container_end_page 4690
_version_ 1766019727745875968
spelling ftcopernicus:oai:publications.copernicus.org:gmd81652 2023-05-15T13:31:39+02:00 Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour Pahlow, Markus Chien, Chia-Te Arteaga, Lionel A. Oschlies, Andreas 2020-10-02 application/pdf https://doi.org/10.5194/gmd-13-4663-2020 https://gmd.copernicus.org/articles/13/4663/2020/ eng eng doi:10.5194/gmd-13-4663-2020 https://gmd.copernicus.org/articles/13/4663/2020/ eISSN: 1991-9603 Text 2020 ftcopernicus https://doi.org/10.5194/gmd-13-4663-2020 2020-10-05T16:22:14Z Uncertainties in projections of marine biogeochemistry from Earth system models (ESMs) are associated to a large degree with the imperfect representation of the marine plankton ecosystem, in particular the physiology of primary and secondary producers. Here, we describe the implementation of an optimality-based plankton–ecosystem model (OPEM) version 1.1 with variable carbon : nitrogen : phosphorus ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">C</mi><mo>:</mo><mi mathvariant="normal">N</mi><mo>:</mo><mi mathvariant="normal">P</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="41pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="89baeb1bef20dd832e5430c0fb7046a4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4663-2020-ie00001.svg" width="41pt" height="10pt" src="gmd-13-4663-2020-ie00001.png"/></svg:svg> ) stoichiometry in the University of Victoria ESM (UVic; Eby et al. , 2009 Weaver et al. , 2001 ) and the behaviour of two calibrated reference configurations, which differ in the assumed temperature dependence of diazotrophs. Predicted tracer distributions of oxygen and dissolved inorganic nutrients are similar to those of an earlier fixed-stoichiometry formulation in UVic ( Nickelsen et al. , 2015 ) . Compared to the classic fixed-stoichiometry UVic model, OPEM is closer to recent satellite-based estimates of net community production (NCP), despite overestimating net primary production (NPP), can better reproduce deep-ocean gradients in the <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup><mo>:</mo><msubsup><mi mathvariant="normal">PO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">3</mn><mo>-</mo></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="60pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="4a3a04c280c26f8bb86c29eb0da7aa02"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4663-2020-ie00002.svg" width="60pt" height="17pt" src="gmd-13-4663-2020-ie00002.png"/></svg:svg> ratio and partially explains observed patterns of particulate <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">C</mi><mo>:</mo><mi mathvariant="normal">N</mi><mo>:</mo><mi mathvariant="normal">P</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="41pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="149f8b236e29ab483fd2cd3ffa1df8f3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4663-2020-ie00003.svg" width="41pt" height="10pt" src="gmd-13-4663-2020-ie00003.png"/></svg:svg> in the surface ocean. Allowing diazotrophs to grow (but not necessarily fix N 2 ) at similar temperatures as other phytoplankton results in a better representation of surface Chl and NPP in the Arctic and Antarctic oceans. Deficiencies of our calibrated OPEM configurations may serve as a magnifying glass for shortcomings in global biogeochemical models and hence guide future model development. The overestimation of NPP at low latitudes indicates the need for improved representations of temperature effects on biotic processes, as well as phytoplankton community composition, which may be represented by locally varying parameters based on suitable trade-offs. The similarity in the overestimation of NPP and surface autotrophic particulate organic carbon (POC) could indicate deficiencies in the representation of top-down control or nutrient supply to the surface ocean. Discrepancies between observed and predicted vertical gradients in particulate <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">C</mi><mo>:</mo><mi mathvariant="normal">N</mi><mo>:</mo><mi mathvariant="normal">P</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="41pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="5278591e939f179feecd541d47d24aa4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4663-2020-ie00004.svg" width="41pt" height="10pt" src="gmd-13-4663-2020-ie00004.png"/></svg:svg> ratios suggest the need to include preferential P remineralisation, which could also benefit the representation of N 2 fixation. While OPEM yields a much improved distribution of surface N* ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow><mo>-</mo><mn mathvariant="normal">16</mn><mo>⋅</mo><mrow class="chem"><msubsup><mi mathvariant="normal">PO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">3</mn><mo>-</mo></mrow></msubsup></mrow><mo>+</mo><mn mathvariant="normal">2.9</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="107pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="7fd9b6d23e10a41bd76f3216e786309b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4663-2020-ie00005.svg" width="107pt" height="17pt" src="gmd-13-4663-2020-ie00005.png"/></svg:svg> mmol m −3 ), it still fails to reproduce observed N* in the Arctic, possibly related to a misrepresentation of the phytoplankton community there and the lack of benthic denitrification in the model. Coexisting ordinary and diazotrophic phytoplankton can exert strong control on N* in our simulations, which questions the interpretation of N* as reflecting the balance of N 2 fixation and denitrification. Text Antarc* Antarctic Arctic Phytoplankton Copernicus Publications: E-Journals Antarctic Arctic Weaver ENVELOPE(-153.833,-153.833,-86.967,-86.967) Geoscientific Model Development 13 10 4663 4690