Representation of the Denmark Strait overflow in a z-coordinate eddying configuration of the NEMO (v3.6) ocean model: resolution and parameter impacts

We investigate in this paper the sensitivity of the representation of the Denmark Strait overflow produced by a regional z -coordinate configuration of NEMO (version 3.6) to the horizontal and vertical grid resolutions and to various numerical and physical parameters. Three different horizontal reso...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: Colombo, Pedro, Barnier, Bernard, Penduff, Thierry, Chanut, Jérôme, Deshayes, Julie, Molines, Jean-Marc, Sommer, Julien, Verezemskaya, Polina, Gulev, Sergey, Treguier, Anne-Marie
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/gmd-13-3347-2020
https://gmd.copernicus.org/articles/13/3347/2020/
id ftcopernicus:oai:publications.copernicus.org:gmd80346
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description We investigate in this paper the sensitivity of the representation of the Denmark Strait overflow produced by a regional z -coordinate configuration of NEMO (version 3.6) to the horizontal and vertical grid resolutions and to various numerical and physical parameters. Three different horizontal resolutions, 1∕12 , 1∕36 , and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">60</mn><msup><mi/><mo>∘</mo></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="605737a624bdf9db2bdc788be7de848d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-3347-2020-ie00001.svg" width="31pt" height="14pt" src="gmd-13-3347-2020-ie00001.png"/></svg:svg> , are respectively used with 46, 75, 150, and 300 vertical levels. In the given numerical set-up, the increase in the vertical resolution did not bring improvement at eddy-permitting resolution ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">12</mn><msup><mi/><mo>∘</mo></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="2747bc57ab6b44de141632bc0eaa3f12"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-3347-2020-ie00002.svg" width="31pt" height="14pt" src="gmd-13-3347-2020-ie00002.png"/></svg:svg> ). We find a greater dilution of the overflow as the number of vertical level increases, and the worst solution is the one with 300 vertical levels. It is found that when the local slope of the grid is weaker than the slope of the topography the result is a more diluted vein. Such a grid enhances the dilution of the plume in the ambient fluid and produces its thickening. Although the greater number of levels allows for a better resolution of the ageostrophic Ekman flow in the bottom layer, the final result also depends on how the local grid slope matches the topographic slope. We also find that for a fixed number of levels, the representation of the overflow is improved when horizontal resolution is increased to 1∕36 and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">60</mn><msup><mi/><mo>∘</mo></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="e70c201d9660a2a381356e9e2b5bd22e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-3347-2020-ie00003.svg" width="31pt" height="14pt" src="gmd-13-3347-2020-ie00003.png"/></svg:svg> , with the most drastic improvements being obtained with 150 levels. With such a number of vertical levels, the enhanced vertical mixing associated with the step-like representation of the topography remains limited to a thin bottom layer representing a minor portion of the overflow. Two major additional players contribute to the sinking of the overflow: the breaking of the overflow into boluses of dense water which contribute to spreading the overflow waters along the Greenland shelf and within the Irminger Basin, and the resolved vertical shear that results from the resolution of the bottom Ekman boundary layer dynamics. This improves the accuracy of the calculation of the entrainment by the turbulent kinetic energy mixing scheme (as it depends on the local shear) and improves the properties of the overflow waters such that they more favourably compare with observations. At 300 vertical levels the dilution is again increased for all horizontal resolutions. The impact on the overflow representation of many other numerical parameters was tested (momentum advection scheme, lateral friction, bottom boundary layer parameterization, closure parameterization, etc.), but none had a significant impact on the overflow representation.
format Text
author Colombo, Pedro
Barnier, Bernard
Penduff, Thierry
Chanut, Jérôme
Deshayes, Julie
Molines, Jean-Marc
Sommer, Julien
Verezemskaya, Polina
Gulev, Sergey
Treguier, Anne-Marie
spellingShingle Colombo, Pedro
Barnier, Bernard
Penduff, Thierry
Chanut, Jérôme
Deshayes, Julie
Molines, Jean-Marc
Sommer, Julien
Verezemskaya, Polina
Gulev, Sergey
Treguier, Anne-Marie
Representation of the Denmark Strait overflow in a z-coordinate eddying configuration of the NEMO (v3.6) ocean model: resolution and parameter impacts
author_facet Colombo, Pedro
Barnier, Bernard
Penduff, Thierry
Chanut, Jérôme
Deshayes, Julie
Molines, Jean-Marc
Sommer, Julien
Verezemskaya, Polina
Gulev, Sergey
Treguier, Anne-Marie
author_sort Colombo, Pedro
title Representation of the Denmark Strait overflow in a z-coordinate eddying configuration of the NEMO (v3.6) ocean model: resolution and parameter impacts
title_short Representation of the Denmark Strait overflow in a z-coordinate eddying configuration of the NEMO (v3.6) ocean model: resolution and parameter impacts
title_full Representation of the Denmark Strait overflow in a z-coordinate eddying configuration of the NEMO (v3.6) ocean model: resolution and parameter impacts
title_fullStr Representation of the Denmark Strait overflow in a z-coordinate eddying configuration of the NEMO (v3.6) ocean model: resolution and parameter impacts
title_full_unstemmed Representation of the Denmark Strait overflow in a z-coordinate eddying configuration of the NEMO (v3.6) ocean model: resolution and parameter impacts
title_sort representation of the denmark strait overflow in a z-coordinate eddying configuration of the nemo (v3.6) ocean model: resolution and parameter impacts
publishDate 2020
url https://doi.org/10.5194/gmd-13-3347-2020
https://gmd.copernicus.org/articles/13/3347/2020/
long_lat ENVELOPE(-36.000,-36.000,61.000,61.000)
geographic Greenland
Irminger Basin
geographic_facet Greenland
Irminger Basin
genre Denmark Strait
Greenland
genre_facet Denmark Strait
Greenland
op_source eISSN: 1991-9603
op_relation doi:10.5194/gmd-13-3347-2020
https://gmd.copernicus.org/articles/13/3347/2020/
op_doi https://doi.org/10.5194/gmd-13-3347-2020
container_title Geoscientific Model Development
container_volume 13
container_issue 7
container_start_page 3347
op_container_end_page 3371
_version_ 1766396693634351104
spelling ftcopernicus:oai:publications.copernicus.org:gmd80346 2023-05-15T16:00:41+02:00 Representation of the Denmark Strait overflow in a z-coordinate eddying configuration of the NEMO (v3.6) ocean model: resolution and parameter impacts Colombo, Pedro Barnier, Bernard Penduff, Thierry Chanut, Jérôme Deshayes, Julie Molines, Jean-Marc Sommer, Julien Verezemskaya, Polina Gulev, Sergey Treguier, Anne-Marie 2020-07-30 application/pdf https://doi.org/10.5194/gmd-13-3347-2020 https://gmd.copernicus.org/articles/13/3347/2020/ eng eng doi:10.5194/gmd-13-3347-2020 https://gmd.copernicus.org/articles/13/3347/2020/ eISSN: 1991-9603 Text 2020 ftcopernicus https://doi.org/10.5194/gmd-13-3347-2020 2020-08-03T16:22:01Z We investigate in this paper the sensitivity of the representation of the Denmark Strait overflow produced by a regional z -coordinate configuration of NEMO (version 3.6) to the horizontal and vertical grid resolutions and to various numerical and physical parameters. Three different horizontal resolutions, 1∕12 , 1∕36 , and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">60</mn><msup><mi/><mo>∘</mo></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="605737a624bdf9db2bdc788be7de848d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-3347-2020-ie00001.svg" width="31pt" height="14pt" src="gmd-13-3347-2020-ie00001.png"/></svg:svg> , are respectively used with 46, 75, 150, and 300 vertical levels. In the given numerical set-up, the increase in the vertical resolution did not bring improvement at eddy-permitting resolution ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">12</mn><msup><mi/><mo>∘</mo></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="2747bc57ab6b44de141632bc0eaa3f12"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-3347-2020-ie00002.svg" width="31pt" height="14pt" src="gmd-13-3347-2020-ie00002.png"/></svg:svg> ). We find a greater dilution of the overflow as the number of vertical level increases, and the worst solution is the one with 300 vertical levels. It is found that when the local slope of the grid is weaker than the slope of the topography the result is a more diluted vein. Such a grid enhances the dilution of the plume in the ambient fluid and produces its thickening. Although the greater number of levels allows for a better resolution of the ageostrophic Ekman flow in the bottom layer, the final result also depends on how the local grid slope matches the topographic slope. We also find that for a fixed number of levels, the representation of the overflow is improved when horizontal resolution is increased to 1∕36 and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">60</mn><msup><mi/><mo>∘</mo></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="e70c201d9660a2a381356e9e2b5bd22e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-3347-2020-ie00003.svg" width="31pt" height="14pt" src="gmd-13-3347-2020-ie00003.png"/></svg:svg> , with the most drastic improvements being obtained with 150 levels. With such a number of vertical levels, the enhanced vertical mixing associated with the step-like representation of the topography remains limited to a thin bottom layer representing a minor portion of the overflow. Two major additional players contribute to the sinking of the overflow: the breaking of the overflow into boluses of dense water which contribute to spreading the overflow waters along the Greenland shelf and within the Irminger Basin, and the resolved vertical shear that results from the resolution of the bottom Ekman boundary layer dynamics. This improves the accuracy of the calculation of the entrainment by the turbulent kinetic energy mixing scheme (as it depends on the local shear) and improves the properties of the overflow waters such that they more favourably compare with observations. At 300 vertical levels the dilution is again increased for all horizontal resolutions. The impact on the overflow representation of many other numerical parameters was tested (momentum advection scheme, lateral friction, bottom boundary layer parameterization, closure parameterization, etc.), but none had a significant impact on the overflow representation. Text Denmark Strait Greenland Copernicus Publications: E-Journals Greenland Irminger Basin ENVELOPE(-36.000,-36.000,61.000,61.000) Geoscientific Model Development 13 7 3347 3371