Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research
This paper provides the first description of the open-source Glacier Energy and Mass Balance model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. It is a column model (no horizontal communication) of intermediate complexity that includ...
Published in: | Geoscientific Model Development |
---|---|
Main Authors: | , , |
Format: | Text |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://doi.org/10.5194/gmd-16-2277-2023 https://gmd.copernicus.org/articles/16/2277/2023/ |
id |
ftcopernicus:oai:publications.copernicus.org:gmd105279 |
---|---|
record_format |
openpolar |
spelling |
ftcopernicus:oai:publications.copernicus.org:gmd105279 2023-06-11T04:12:49+02:00 Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research Gardner, Alex S. Schlegel, Nicole-Jeanne Larour, Eric 2023-04-27 application/pdf https://doi.org/10.5194/gmd-16-2277-2023 https://gmd.copernicus.org/articles/16/2277/2023/ eng eng doi:10.5194/gmd-16-2277-2023 https://gmd.copernicus.org/articles/16/2277/2023/ eISSN: 1991-9603 Text 2023 ftcopernicus https://doi.org/10.5194/gmd-16-2277-2023 2023-05-01T16:23:11Z This paper provides the first description of the open-source Glacier Energy and Mass Balance model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. It is a column model (no horizontal communication) of intermediate complexity that includes those processes deemed most relevant to glacier studies. GEMB prioritizes computational efficiency to accommodate the very long (thousands of years) spin-ups necessary for initializing deep firn columns and sensitivity experiments needed to characterize model uncertainty on continental scales. The model is one-way coupled with the atmosphere, which allows the model to be run offline with a diversity of climate forcing but neglects feedback to the atmosphere. GEMB provides numerous parameterization choices for various key processes (e.g., albedo, subsurface shortwave absorption, and compaction), making it well suited for uncertainty quantification and model exploration. The model is evaluated against the current state of the art and in situ observations and is shown to perform well. Text Ice Sheet Copernicus Publications: E-Journals Geoscientific Model Development 16 8 2277 2302 |
institution |
Open Polar |
collection |
Copernicus Publications: E-Journals |
op_collection_id |
ftcopernicus |
language |
English |
description |
This paper provides the first description of the open-source Glacier Energy and Mass Balance model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. It is a column model (no horizontal communication) of intermediate complexity that includes those processes deemed most relevant to glacier studies. GEMB prioritizes computational efficiency to accommodate the very long (thousands of years) spin-ups necessary for initializing deep firn columns and sensitivity experiments needed to characterize model uncertainty on continental scales. The model is one-way coupled with the atmosphere, which allows the model to be run offline with a diversity of climate forcing but neglects feedback to the atmosphere. GEMB provides numerous parameterization choices for various key processes (e.g., albedo, subsurface shortwave absorption, and compaction), making it well suited for uncertainty quantification and model exploration. The model is evaluated against the current state of the art and in situ observations and is shown to perform well. |
format |
Text |
author |
Gardner, Alex S. Schlegel, Nicole-Jeanne Larour, Eric |
spellingShingle |
Gardner, Alex S. Schlegel, Nicole-Jeanne Larour, Eric Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research |
author_facet |
Gardner, Alex S. Schlegel, Nicole-Jeanne Larour, Eric |
author_sort |
Gardner, Alex S. |
title |
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research |
title_short |
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research |
title_full |
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research |
title_fullStr |
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research |
title_full_unstemmed |
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research |
title_sort |
glacier energy and mass balance (gemb): a model of firn processes for cryosphere research |
publishDate |
2023 |
url |
https://doi.org/10.5194/gmd-16-2277-2023 https://gmd.copernicus.org/articles/16/2277/2023/ |
genre |
Ice Sheet |
genre_facet |
Ice Sheet |
op_source |
eISSN: 1991-9603 |
op_relation |
doi:10.5194/gmd-16-2277-2023 https://gmd.copernicus.org/articles/16/2277/2023/ |
op_doi |
https://doi.org/10.5194/gmd-16-2277-2023 |
container_title |
Geoscientific Model Development |
container_volume |
16 |
container_issue |
8 |
container_start_page |
2277 |
op_container_end_page |
2302 |
_version_ |
1768388929634959360 |