Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya

Debris-covered glaciers in the Himalaya play an important role in the high-altitude water cycle. The thickness of the debris layer is a key control of the melt rate of those glaciers, yet little is known about the relative importance of the three potential sources of debris supply: the rockwalls, th...

Full description

Bibliographic Details
Published in:Earth Surface Dynamics
Main Authors: Woerkom, Teun, Steiner, Jakob F., Kraaijenbrink, Philip D. A., Miles, Evan S., Immerzeel, Walter W.
Format: Text
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.5194/esurf-7-411-2019
https://esurf.copernicus.org/articles/7/411/2019/
_version_ 1821541450575249408
author Woerkom, Teun
Steiner, Jakob F.
Kraaijenbrink, Philip D. A.
Miles, Evan S.
Immerzeel, Walter W.
author_facet Woerkom, Teun
Steiner, Jakob F.
Kraaijenbrink, Philip D. A.
Miles, Evan S.
Immerzeel, Walter W.
author_sort Woerkom, Teun
collection Copernicus Publications: E-Journals
container_issue 2
container_start_page 411
container_title Earth Surface Dynamics
container_volume 7
description Debris-covered glaciers in the Himalaya play an important role in the high-altitude water cycle. The thickness of the debris layer is a key control of the melt rate of those glaciers, yet little is known about the relative importance of the three potential sources of debris supply: the rockwalls, the glacier bed and the lateral moraines. In this study, we hypothesize that mass movement from the lateral moraines is a significant debris supply to debris-covered glaciers, in particular when the glacier is disconnected from the rockwall due to downwasting. To test this hypothesis, eight high-resolution and accurate digital elevation models from the lateral moraines of the debris-covered Lirung Glacier in Nepal are used. These are created using structure from motion (SfM), based on images captured using an unmanned aerial vehicle between May 2013 and April 2018. The analysis shows that mass transport results in an elevation change on the lateral moraines with an average rate of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.31</mn><mo>±</mo><mn mathvariant="normal">0.26</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="aa00c67156b84b402070abb2fd0b53e1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esurf-7-411-2019-ie00001.svg" width="64pt" height="10pt" src="esurf-7-411-2019-ie00001.png"/></svg:svg> m year −1 during this period, partly related to sub-moraine ice melt. There is a higher elevation change rate observed in the monsoon ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.39</mn><mo>±</mo><mn mathvariant="normal">0.74</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="0f96d52321136260d7a0b32374d7fb27"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esurf-7-411-2019-ie00002.svg" width="64pt" height="10pt" src="esurf-7-411-2019-ie00002.png"/></svg:svg> m year −1 ) than in the dry season ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.23</mn><mo>±</mo><mn mathvariant="normal">0.68</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="affdeffebb9c4935f14c2ee6192dbac6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esurf-7-411-2019-ie00003.svg" width="64pt" height="10pt" src="esurf-7-411-2019-ie00003.png"/></svg:svg> m year −1 ). The lower debris aprons of the lateral moraines decrease in elevation at a faster rate during both seasons, probably due to the melt of ice below. The surface lowering rates of the upper gullied moraine, with no ice core below, translate into an annual increase in debris thickness of 0.08 m year −1 along a narrow margin of the glacier surface, with an observed absolute thickness of approximately 1 m, reducing melt rates of underlying glacier ice. Further research should focus on how large this negative feedback is in controlling melt and how debris is redistributed on the glacier surface.
format Text
genre ice core
genre_facet ice core
id ftcopernicus:oai:publications.copernicus.org:esurf70678
institution Open Polar
language English
op_collection_id ftcopernicus
op_container_end_page 427
op_doi https://doi.org/10.5194/esurf-7-411-2019
op_relation doi:10.5194/esurf-7-411-2019
https://esurf.copernicus.org/articles/7/411/2019/
op_source eISSN: 2196-632X
publishDate 2019
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:esurf70678 2025-01-16T22:24:42+00:00 Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya Woerkom, Teun Steiner, Jakob F. Kraaijenbrink, Philip D. A. Miles, Evan S. Immerzeel, Walter W. 2019-05-14 application/pdf https://doi.org/10.5194/esurf-7-411-2019 https://esurf.copernicus.org/articles/7/411/2019/ eng eng doi:10.5194/esurf-7-411-2019 https://esurf.copernicus.org/articles/7/411/2019/ eISSN: 2196-632X Text 2019 ftcopernicus https://doi.org/10.5194/esurf-7-411-2019 2020-07-20T16:22:50Z Debris-covered glaciers in the Himalaya play an important role in the high-altitude water cycle. The thickness of the debris layer is a key control of the melt rate of those glaciers, yet little is known about the relative importance of the three potential sources of debris supply: the rockwalls, the glacier bed and the lateral moraines. In this study, we hypothesize that mass movement from the lateral moraines is a significant debris supply to debris-covered glaciers, in particular when the glacier is disconnected from the rockwall due to downwasting. To test this hypothesis, eight high-resolution and accurate digital elevation models from the lateral moraines of the debris-covered Lirung Glacier in Nepal are used. These are created using structure from motion (SfM), based on images captured using an unmanned aerial vehicle between May 2013 and April 2018. The analysis shows that mass transport results in an elevation change on the lateral moraines with an average rate of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.31</mn><mo>±</mo><mn mathvariant="normal">0.26</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="aa00c67156b84b402070abb2fd0b53e1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esurf-7-411-2019-ie00001.svg" width="64pt" height="10pt" src="esurf-7-411-2019-ie00001.png"/></svg:svg> m year −1 during this period, partly related to sub-moraine ice melt. There is a higher elevation change rate observed in the monsoon ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.39</mn><mo>±</mo><mn mathvariant="normal">0.74</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="0f96d52321136260d7a0b32374d7fb27"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esurf-7-411-2019-ie00002.svg" width="64pt" height="10pt" src="esurf-7-411-2019-ie00002.png"/></svg:svg> m year −1 ) than in the dry season ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.23</mn><mo>±</mo><mn mathvariant="normal">0.68</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="affdeffebb9c4935f14c2ee6192dbac6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esurf-7-411-2019-ie00003.svg" width="64pt" height="10pt" src="esurf-7-411-2019-ie00003.png"/></svg:svg> m year −1 ). The lower debris aprons of the lateral moraines decrease in elevation at a faster rate during both seasons, probably due to the melt of ice below. The surface lowering rates of the upper gullied moraine, with no ice core below, translate into an annual increase in debris thickness of 0.08 m year −1 along a narrow margin of the glacier surface, with an observed absolute thickness of approximately 1 m, reducing melt rates of underlying glacier ice. Further research should focus on how large this negative feedback is in controlling melt and how debris is redistributed on the glacier surface. Text ice core Copernicus Publications: E-Journals Earth Surface Dynamics 7 2 411 427
spellingShingle Woerkom, Teun
Steiner, Jakob F.
Kraaijenbrink, Philip D. A.
Miles, Evan S.
Immerzeel, Walter W.
Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya
title Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya
title_full Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya
title_fullStr Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya
title_full_unstemmed Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya
title_short Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya
title_sort sediment supply from lateral moraines to a debris-covered glacier in the himalaya
url https://doi.org/10.5194/esurf-7-411-2019
https://esurf.copernicus.org/articles/7/411/2019/