Yukon River incision drove organic carbon burial in the Bering Sea during global climate changes at 2.6 and 1 Ma

River erosion affects the carbon cycle and thus climate by exporting terrigenous carbon to seafloor sediment and by nourishing CO 2 -consuming marine life. The Yukon River–Bering Sea system preserves rare source-to-sink records of these processes across profound changes in global climate during the...

Full description

Bibliographic Details
Published in:Earth Surface Dynamics
Main Authors: Bender, Adrian M., Lease, Richard O., Corbett, Lee B., Bierman, Paul R., Caffee, Marc W., Jones, James V., Kreiner, Doug
Format: Text
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.5194/esurf-10-1041-2022
https://esurf.copernicus.org/articles/10/1041/2022/
id ftcopernicus:oai:publications.copernicus.org:esurf103450
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:esurf103450 2023-05-15T15:43:10+02:00 Yukon River incision drove organic carbon burial in the Bering Sea during global climate changes at 2.6 and 1 Ma Bender, Adrian M. Lease, Richard O. Corbett, Lee B. Bierman, Paul R. Caffee, Marc W. Jones, James V. Kreiner, Doug 2022-10-28 application/pdf https://doi.org/10.5194/esurf-10-1041-2022 https://esurf.copernicus.org/articles/10/1041/2022/ eng eng doi:10.5194/esurf-10-1041-2022 https://esurf.copernicus.org/articles/10/1041/2022/ eISSN: 2196-632X Text 2022 ftcopernicus https://doi.org/10.5194/esurf-10-1041-2022 2022-10-31T17:22:41Z River erosion affects the carbon cycle and thus climate by exporting terrigenous carbon to seafloor sediment and by nourishing CO 2 -consuming marine life. The Yukon River–Bering Sea system preserves rare source-to-sink records of these processes across profound changes in global climate during the past 5 million years (Ma). Here, we expand the terrestrial erosion record by dating terraces along the Charley River, Alaska, and explore linkages among previously published Yukon River tributary incision chronologies and Bering Sea sedimentation. Cosmogenic <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msup><mi/><mn mathvariant="normal">26</mn></msup><mi mathvariant="normal">Al</mi></mrow><mo>/</mo><mrow class="chem"><msup><mi/><mn mathvariant="normal">10</mn></msup><mi mathvariant="normal">Be</mi></mrow></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="eaa31c44e7a402abc4a04e87022a8d92"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esurf-10-1041-2022-ie00001.svg" width="50pt" height="15pt" src="esurf-10-1041-2022-ie00001.png"/></svg:svg> isochron burial ages of Charley River terraces match previously documented central Yukon River tributary incision from 2.6 to 1.6 Ma during Pliocene–Pleistocene glacial expansion, and at 1.1 Ma during the 1.2–0.7 Ma Middle Pleistocene climate transition. Bering Sea sediments preserve 2–4-fold rate increases of Yukon River-derived continental detritus, terrestrial and marine organic carbon, and silicate microfossil deposition at 2.6–2.1 and 1.1–0.8 Ma. These tightly coupled records demonstrate elevated terrigenous nutrient and carbon export and concomitant Bering Sea productivity in response to climate-forced Yukon River incision. ... Text Bering Sea Yukon river Alaska Yukon Copernicus Publications: E-Journals Bering Sea Yukon Earth Surface Dynamics 10 5 1041 1053
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description River erosion affects the carbon cycle and thus climate by exporting terrigenous carbon to seafloor sediment and by nourishing CO 2 -consuming marine life. The Yukon River–Bering Sea system preserves rare source-to-sink records of these processes across profound changes in global climate during the past 5 million years (Ma). Here, we expand the terrestrial erosion record by dating terraces along the Charley River, Alaska, and explore linkages among previously published Yukon River tributary incision chronologies and Bering Sea sedimentation. Cosmogenic <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msup><mi/><mn mathvariant="normal">26</mn></msup><mi mathvariant="normal">Al</mi></mrow><mo>/</mo><mrow class="chem"><msup><mi/><mn mathvariant="normal">10</mn></msup><mi mathvariant="normal">Be</mi></mrow></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="eaa31c44e7a402abc4a04e87022a8d92"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esurf-10-1041-2022-ie00001.svg" width="50pt" height="15pt" src="esurf-10-1041-2022-ie00001.png"/></svg:svg> isochron burial ages of Charley River terraces match previously documented central Yukon River tributary incision from 2.6 to 1.6 Ma during Pliocene–Pleistocene glacial expansion, and at 1.1 Ma during the 1.2–0.7 Ma Middle Pleistocene climate transition. Bering Sea sediments preserve 2–4-fold rate increases of Yukon River-derived continental detritus, terrestrial and marine organic carbon, and silicate microfossil deposition at 2.6–2.1 and 1.1–0.8 Ma. These tightly coupled records demonstrate elevated terrigenous nutrient and carbon export and concomitant Bering Sea productivity in response to climate-forced Yukon River incision. ...
format Text
author Bender, Adrian M.
Lease, Richard O.
Corbett, Lee B.
Bierman, Paul R.
Caffee, Marc W.
Jones, James V.
Kreiner, Doug
spellingShingle Bender, Adrian M.
Lease, Richard O.
Corbett, Lee B.
Bierman, Paul R.
Caffee, Marc W.
Jones, James V.
Kreiner, Doug
Yukon River incision drove organic carbon burial in the Bering Sea during global climate changes at 2.6 and 1 Ma
author_facet Bender, Adrian M.
Lease, Richard O.
Corbett, Lee B.
Bierman, Paul R.
Caffee, Marc W.
Jones, James V.
Kreiner, Doug
author_sort Bender, Adrian M.
title Yukon River incision drove organic carbon burial in the Bering Sea during global climate changes at 2.6 and 1 Ma
title_short Yukon River incision drove organic carbon burial in the Bering Sea during global climate changes at 2.6 and 1 Ma
title_full Yukon River incision drove organic carbon burial in the Bering Sea during global climate changes at 2.6 and 1 Ma
title_fullStr Yukon River incision drove organic carbon burial in the Bering Sea during global climate changes at 2.6 and 1 Ma
title_full_unstemmed Yukon River incision drove organic carbon burial in the Bering Sea during global climate changes at 2.6 and 1 Ma
title_sort yukon river incision drove organic carbon burial in the bering sea during global climate changes at 2.6 and 1 ma
publishDate 2022
url https://doi.org/10.5194/esurf-10-1041-2022
https://esurf.copernicus.org/articles/10/1041/2022/
geographic Bering Sea
Yukon
geographic_facet Bering Sea
Yukon
genre Bering Sea
Yukon river
Alaska
Yukon
genre_facet Bering Sea
Yukon river
Alaska
Yukon
op_source eISSN: 2196-632X
op_relation doi:10.5194/esurf-10-1041-2022
https://esurf.copernicus.org/articles/10/1041/2022/
op_doi https://doi.org/10.5194/esurf-10-1041-2022
container_title Earth Surface Dynamics
container_volume 10
container_issue 5
container_start_page 1041
op_container_end_page 1053
_version_ 1766377217490681856