SMOS-derived Antarctic thin sea-ice thickness: data description and validation in the Weddell Sea

Accurate satellite measurements of the thickness of Antarctic sea ice are urgently needed but pose a particular challenge. The Antarctic data presented here were produced using a method to derive the sea-ice thickness from 1.4 GHz brightness temperatures previously developed for the Arctic, with onl...

Full description

Bibliographic Details
Main Authors: Kaleschke, Lars, Tian-Kunze, Xiangshan, Hendricks, Stefan, Ricker, Robert
Format: Text
Language:English
Published: 2023
Subjects:
Online Access:https://doi.org/10.5194/essd-2023-326
https://essd.copernicus.org/preprints/essd-2023-326/
id ftcopernicus:oai:publications.copernicus.org:essdd114096
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:essdd114096 2023-10-09T21:47:11+02:00 SMOS-derived Antarctic thin sea-ice thickness: data description and validation in the Weddell Sea Kaleschke, Lars Tian-Kunze, Xiangshan Hendricks, Stefan Ricker, Robert 2023-09-11 application/pdf https://doi.org/10.5194/essd-2023-326 https://essd.copernicus.org/preprints/essd-2023-326/ eng eng doi:10.5194/essd-2023-326 https://essd.copernicus.org/preprints/essd-2023-326/ eISSN: 1866-3516 Text 2023 ftcopernicus https://doi.org/10.5194/essd-2023-326 2023-09-18T16:24:17Z Accurate satellite measurements of the thickness of Antarctic sea ice are urgently needed but pose a particular challenge. The Antarctic data presented here were produced using a method to derive the sea-ice thickness from 1.4 GHz brightness temperatures previously developed for the Arctic, with only modified auxiliary data. The ability to detect thin sea- ice thicknesses using this method is limited to cold conditions, meaning it is only possible during the freezing period, typically March to October. The SMOS level 3 sea-ice thickness product contains estimates of the sea-ice thickness and its uncertainty up to a thickness of about 1 m. The sea-ice thickness is provided as daily average on a polar stereographic projection grid with a sample resolution of 12.5 km, while the SMOS brightness temperature data used has a footprint size of about 35–40 km in diameter. Data from SMOS have been available since 2010, and the mission’s operation has been extended to continue until at least the end of 2025. Here we compare two versions of the SMOS Antarctic sea-ice thickness product which are based on different level 1 input data (v32 based on SMOS L1C v620, and v33 based on SMOS L1C 724). A validation is performed to have a first baseline reference for future improvements of the retrieval algorithm and synergies with other sensors. Sea-ice thickness measurements to validate the SMOS product are particularly rare in Antarctica, especially during the winter season and for the valid range of thicknesses. From the available validation measurements, we selected datasets from the Weddell Sea that have varying degrees of representativeness: Helicopter-based EM Bird (HEM), Surface and Under-Ice Trawl (SUIT), and stationary Upward-Looking Sonars (ULS). While the helicopter can measure hundreds of kilometers, the SUIT’s use is limited to distances of a few kilometers and thus only captures a small fraction of an SMOS footprint. Compared to SMOS, the ULS are point measurements and multi-year time series are necessary to enable a ... Text Antarc* Antarctic Antarctica Arctic Sea ice Weddell Sea Copernicus Publications: E-Journals Antarctic Arctic The Antarctic Weddell Weddell Sea
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Accurate satellite measurements of the thickness of Antarctic sea ice are urgently needed but pose a particular challenge. The Antarctic data presented here were produced using a method to derive the sea-ice thickness from 1.4 GHz brightness temperatures previously developed for the Arctic, with only modified auxiliary data. The ability to detect thin sea- ice thicknesses using this method is limited to cold conditions, meaning it is only possible during the freezing period, typically March to October. The SMOS level 3 sea-ice thickness product contains estimates of the sea-ice thickness and its uncertainty up to a thickness of about 1 m. The sea-ice thickness is provided as daily average on a polar stereographic projection grid with a sample resolution of 12.5 km, while the SMOS brightness temperature data used has a footprint size of about 35–40 km in diameter. Data from SMOS have been available since 2010, and the mission’s operation has been extended to continue until at least the end of 2025. Here we compare two versions of the SMOS Antarctic sea-ice thickness product which are based on different level 1 input data (v32 based on SMOS L1C v620, and v33 based on SMOS L1C 724). A validation is performed to have a first baseline reference for future improvements of the retrieval algorithm and synergies with other sensors. Sea-ice thickness measurements to validate the SMOS product are particularly rare in Antarctica, especially during the winter season and for the valid range of thicknesses. From the available validation measurements, we selected datasets from the Weddell Sea that have varying degrees of representativeness: Helicopter-based EM Bird (HEM), Surface and Under-Ice Trawl (SUIT), and stationary Upward-Looking Sonars (ULS). While the helicopter can measure hundreds of kilometers, the SUIT’s use is limited to distances of a few kilometers and thus only captures a small fraction of an SMOS footprint. Compared to SMOS, the ULS are point measurements and multi-year time series are necessary to enable a ...
format Text
author Kaleschke, Lars
Tian-Kunze, Xiangshan
Hendricks, Stefan
Ricker, Robert
spellingShingle Kaleschke, Lars
Tian-Kunze, Xiangshan
Hendricks, Stefan
Ricker, Robert
SMOS-derived Antarctic thin sea-ice thickness: data description and validation in the Weddell Sea
author_facet Kaleschke, Lars
Tian-Kunze, Xiangshan
Hendricks, Stefan
Ricker, Robert
author_sort Kaleschke, Lars
title SMOS-derived Antarctic thin sea-ice thickness: data description and validation in the Weddell Sea
title_short SMOS-derived Antarctic thin sea-ice thickness: data description and validation in the Weddell Sea
title_full SMOS-derived Antarctic thin sea-ice thickness: data description and validation in the Weddell Sea
title_fullStr SMOS-derived Antarctic thin sea-ice thickness: data description and validation in the Weddell Sea
title_full_unstemmed SMOS-derived Antarctic thin sea-ice thickness: data description and validation in the Weddell Sea
title_sort smos-derived antarctic thin sea-ice thickness: data description and validation in the weddell sea
publishDate 2023
url https://doi.org/10.5194/essd-2023-326
https://essd.copernicus.org/preprints/essd-2023-326/
geographic Antarctic
Arctic
The Antarctic
Weddell
Weddell Sea
geographic_facet Antarctic
Arctic
The Antarctic
Weddell
Weddell Sea
genre Antarc*
Antarctic
Antarctica
Arctic
Sea ice
Weddell Sea
genre_facet Antarc*
Antarctic
Antarctica
Arctic
Sea ice
Weddell Sea
op_source eISSN: 1866-3516
op_relation doi:10.5194/essd-2023-326
https://essd.copernicus.org/preprints/essd-2023-326/
op_doi https://doi.org/10.5194/essd-2023-326
_version_ 1779310068330659840