Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers

Snow over sea ice controls energy budgets and affects sea ice growth and melting and thus has essential effects on the climate. Passive microwave radiometers can be used for basin-scale snow depth estimation at a daily scale; however, previously published methods applied to the Antarctic clearly und...

Full description

Bibliographic Details
Published in:Earth System Science Data
Main Authors: Shen, Xiaoyi, Ke, Chang-Qing, Li, Haili
Format: Text
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.5194/essd-14-619-2022
https://essd.copernicus.org/articles/14/619/2022/
id ftcopernicus:oai:publications.copernicus.org:essd97125
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Snow over sea ice controls energy budgets and affects sea ice growth and melting and thus has essential effects on the climate. Passive microwave radiometers can be used for basin-scale snow depth estimation at a daily scale; however, previously published methods applied to the Antarctic clearly underestimated snow depth, limiting their further application. Here, we estimated snow depth using passive microwave radiometers and a newly constructed, robust method by incorporating lower frequencies, which have been available from AMSR-E and AMSR-2 since 2002. A regression analysis using 7 years of Operation IceBridge (OIB) airborne snow depth measurements showed that the gradient ratio (GR) calculated using brightness temperatures in vertically polarized 37 and 7 GHz, i.e. GR(37 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1b4178c77ca0d4bfee6c9ddd864f3a43"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-619-2022-ie00001.svg" width="8pt" height="14pt" src="essd-14-619-2022-ie00001.png"/></svg:svg> 7), was optimal for deriving Antarctic snow depth, with a correlation coefficient of − 0.64. We hence derived new coefficients based on GR(37 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="e653eaf840568ee76bb20ba3bf368ae0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-619-2022-ie00002.svg" width="8pt" height="14pt" src="essd-14-619-2022-ie00002.png"/></svg:svg> 7) to improve the current snow depth estimation from passive microwave radiometers. Comparing the new retrieval with in situ measurements from the Australian Antarctic Data Centre showed that this method outperformed the previously available method (i.e. linear regression model based on GR(37 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="57ee8123d9c9aefcf23d9c7f6463c158"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-619-2022-ie00003.svg" width="8pt" height="14pt" src="essd-14-619-2022-ie00003.png"/></svg:svg> 19)), with a mean difference of 5.64 cm and an RMSD of 13.79 cm, compared to values of − 14.47 and 19.49 cm, respectively. A comparison to shipborne observations from Antarctic Sea Ice Processes and Climate indicated that in thin-ice regions, the proposed method performed slightly better than the previous method (with RMSDs of 16.85 and 17.61 cm, respectively). We generated a complete snow depth product over Antarctic sea ice from 2002 to 2020 on a daily scale, and negative trends could be found in all sea sectors and seasons. This dataset (including both snow depth and snow depth uncertainty) can be downloaded from the National Tibetan Plateau Data Center, Institute of Tibetan Plateau Research, Chinese Academy of Sciences at http://data.tpdc.ac.cn/en/disallow/61ea8177-7177-4507-aeeb-0c7b653d6fc3/ (last access: 7 February 2022) (Shen and Ke, 2021, https://doi.org/10.11888/Snow.tpdc.271653 ).
format Text
author Shen, Xiaoyi
Ke, Chang-Qing
Li, Haili
spellingShingle Shen, Xiaoyi
Ke, Chang-Qing
Li, Haili
Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers
author_facet Shen, Xiaoyi
Ke, Chang-Qing
Li, Haili
author_sort Shen, Xiaoyi
title Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers
title_short Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers
title_full Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers
title_fullStr Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers
title_full_unstemmed Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers
title_sort snow depth product over antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers
publishDate 2022
url https://doi.org/10.5194/essd-14-619-2022
https://essd.copernicus.org/articles/14/619/2022/
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
Sea ice
genre_facet Antarc*
Antarctic
Sea ice
op_source eISSN: 1866-3516
op_relation doi:10.5194/essd-14-619-2022
https://essd.copernicus.org/articles/14/619/2022/
op_doi https://doi.org/10.5194/essd-14-619-2022
container_title Earth System Science Data
container_volume 14
container_issue 2
container_start_page 619
op_container_end_page 636
_version_ 1766272485509038080
spelling ftcopernicus:oai:publications.copernicus.org:essd97125 2023-05-15T14:02:17+02:00 Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers Shen, Xiaoyi Ke, Chang-Qing Li, Haili 2022-02-09 application/pdf https://doi.org/10.5194/essd-14-619-2022 https://essd.copernicus.org/articles/14/619/2022/ eng eng doi:10.5194/essd-14-619-2022 https://essd.copernicus.org/articles/14/619/2022/ eISSN: 1866-3516 Text 2022 ftcopernicus https://doi.org/10.5194/essd-14-619-2022 2022-02-14T17:22:14Z Snow over sea ice controls energy budgets and affects sea ice growth and melting and thus has essential effects on the climate. Passive microwave radiometers can be used for basin-scale snow depth estimation at a daily scale; however, previously published methods applied to the Antarctic clearly underestimated snow depth, limiting their further application. Here, we estimated snow depth using passive microwave radiometers and a newly constructed, robust method by incorporating lower frequencies, which have been available from AMSR-E and AMSR-2 since 2002. A regression analysis using 7 years of Operation IceBridge (OIB) airborne snow depth measurements showed that the gradient ratio (GR) calculated using brightness temperatures in vertically polarized 37 and 7 GHz, i.e. GR(37 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1b4178c77ca0d4bfee6c9ddd864f3a43"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-619-2022-ie00001.svg" width="8pt" height="14pt" src="essd-14-619-2022-ie00001.png"/></svg:svg> 7), was optimal for deriving Antarctic snow depth, with a correlation coefficient of − 0.64. We hence derived new coefficients based on GR(37 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="e653eaf840568ee76bb20ba3bf368ae0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-619-2022-ie00002.svg" width="8pt" height="14pt" src="essd-14-619-2022-ie00002.png"/></svg:svg> 7) to improve the current snow depth estimation from passive microwave radiometers. Comparing the new retrieval with in situ measurements from the Australian Antarctic Data Centre showed that this method outperformed the previously available method (i.e. linear regression model based on GR(37 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="57ee8123d9c9aefcf23d9c7f6463c158"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-619-2022-ie00003.svg" width="8pt" height="14pt" src="essd-14-619-2022-ie00003.png"/></svg:svg> 19)), with a mean difference of 5.64 cm and an RMSD of 13.79 cm, compared to values of − 14.47 and 19.49 cm, respectively. A comparison to shipborne observations from Antarctic Sea Ice Processes and Climate indicated that in thin-ice regions, the proposed method performed slightly better than the previous method (with RMSDs of 16.85 and 17.61 cm, respectively). We generated a complete snow depth product over Antarctic sea ice from 2002 to 2020 on a daily scale, and negative trends could be found in all sea sectors and seasons. This dataset (including both snow depth and snow depth uncertainty) can be downloaded from the National Tibetan Plateau Data Center, Institute of Tibetan Plateau Research, Chinese Academy of Sciences at http://data.tpdc.ac.cn/en/disallow/61ea8177-7177-4507-aeeb-0c7b653d6fc3/ (last access: 7 February 2022) (Shen and Ke, 2021, https://doi.org/10.11888/Snow.tpdc.271653 ). Text Antarc* Antarctic Sea ice Copernicus Publications: E-Journals Antarctic The Antarctic Earth System Science Data 14 2 619 636