Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2

This study documents clouds simulated by the Energy Exascale Earth System Model (E3SM) version 2 (E3SMv2) and attempts to understand what causes the model behavior change in clouds relative to E3SMv1. This is done by analyzing the last 30-year (1985–2014) data from the 165-year historical simulation...

Full description

Bibliographic Details
Main Authors: Zhang, Yuying, Xie, Shaocheng, Qin, Yi, Lin, Wuyin, Golaz, Jean-Christophe, Zheng, Xue, Ma, Po-Lun, Qian, Yun, Tang, Qi, Terai, Christopher R., Zhang, Meng
Format: Text
Language:English
Published: 2024
Subjects:
Online Access:https://doi.org/10.5194/egusphere-2023-1263
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1263/
id ftcopernicus:oai:publications.copernicus.org:egusphere112182
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:egusphere112182 2024-02-11T10:08:53+01:00 Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2 Zhang, Yuying Xie, Shaocheng Qin, Yi Lin, Wuyin Golaz, Jean-Christophe Zheng, Xue Ma, Po-Lun Qian, Yun Tang, Qi Terai, Christopher R. Zhang, Meng 2024-01-10 application/pdf https://doi.org/10.5194/egusphere-2023-1263 https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1263/ eng eng doi:10.5194/egusphere-2023-1263 https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1263/ eISSN: Text 2024 ftcopernicus https://doi.org/10.5194/egusphere-2023-1263 2024-01-15T17:24:15Z This study documents clouds simulated by the Energy Exascale Earth System Model (E3SM) version 2 (E3SMv2) and attempts to understand what causes the model behavior change in clouds relative to E3SMv1. This is done by analyzing the last 30-year (1985–2014) data from the 165-year historical simulations using E3SMv1 and v2 and four sensitivity tests to isolate the impact of changes in model parameter choices in its turbulence, shallow convection, and cloud macrophysics parameterization (Cloud Layers Unified By Binormals, CLUBB); microphysical parameterization (MG2); and deep-convection scheme (ZM), as well as model physics changes in convective triggering. It is shown that E3SMv2 significantly improves the simulation of subtropical coastal stratocumulus clouds and clouds with optical depth larger than 3.6 over the stratocumulus-to-cumulus transition regimes, where the shortwave cloud radiative effect (SWCRE) is also improved, and the Southern Ocean (SO) while seeing an overall slight degradation in low clouds over other tropical and subtropical oceans. The better performance in E3SMv1 over those regions is partially due to error compensation between its simulated optically thin and intermediate low clouds for which E3SMv2 actually improves simulation of optically intermediate low clouds. Sensitivity tests indicate that the changes in low clouds are primarily due to the tuning done in CLUBB. The impact of the ZM tuning is mainly on optically intermediate and thick high clouds, contributing to an improved SWCRE and longwave cloud radiative effect (LWCRE). The impact of the MG2 tuning and the new convective trigger is primarily on the high latitudes and the SO. They have a relatively smaller impact on clouds than CLUBB tuning and ZM tuning do. This study offers additional insights into clouds simulated in E3SMv2 by utilizing multiple data sets and the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) diagnostic tool as well as sensitivity tests. The improved understanding will ... Text Southern Ocean Copernicus Publications: E-Journals Southern Ocean
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description This study documents clouds simulated by the Energy Exascale Earth System Model (E3SM) version 2 (E3SMv2) and attempts to understand what causes the model behavior change in clouds relative to E3SMv1. This is done by analyzing the last 30-year (1985–2014) data from the 165-year historical simulations using E3SMv1 and v2 and four sensitivity tests to isolate the impact of changes in model parameter choices in its turbulence, shallow convection, and cloud macrophysics parameterization (Cloud Layers Unified By Binormals, CLUBB); microphysical parameterization (MG2); and deep-convection scheme (ZM), as well as model physics changes in convective triggering. It is shown that E3SMv2 significantly improves the simulation of subtropical coastal stratocumulus clouds and clouds with optical depth larger than 3.6 over the stratocumulus-to-cumulus transition regimes, where the shortwave cloud radiative effect (SWCRE) is also improved, and the Southern Ocean (SO) while seeing an overall slight degradation in low clouds over other tropical and subtropical oceans. The better performance in E3SMv1 over those regions is partially due to error compensation between its simulated optically thin and intermediate low clouds for which E3SMv2 actually improves simulation of optically intermediate low clouds. Sensitivity tests indicate that the changes in low clouds are primarily due to the tuning done in CLUBB. The impact of the ZM tuning is mainly on optically intermediate and thick high clouds, contributing to an improved SWCRE and longwave cloud radiative effect (LWCRE). The impact of the MG2 tuning and the new convective trigger is primarily on the high latitudes and the SO. They have a relatively smaller impact on clouds than CLUBB tuning and ZM tuning do. This study offers additional insights into clouds simulated in E3SMv2 by utilizing multiple data sets and the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) diagnostic tool as well as sensitivity tests. The improved understanding will ...
format Text
author Zhang, Yuying
Xie, Shaocheng
Qin, Yi
Lin, Wuyin
Golaz, Jean-Christophe
Zheng, Xue
Ma, Po-Lun
Qian, Yun
Tang, Qi
Terai, Christopher R.
Zhang, Meng
spellingShingle Zhang, Yuying
Xie, Shaocheng
Qin, Yi
Lin, Wuyin
Golaz, Jean-Christophe
Zheng, Xue
Ma, Po-Lun
Qian, Yun
Tang, Qi
Terai, Christopher R.
Zhang, Meng
Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2
author_facet Zhang, Yuying
Xie, Shaocheng
Qin, Yi
Lin, Wuyin
Golaz, Jean-Christophe
Zheng, Xue
Ma, Po-Lun
Qian, Yun
Tang, Qi
Terai, Christopher R.
Zhang, Meng
author_sort Zhang, Yuying
title Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2
title_short Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2
title_full Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2
title_fullStr Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2
title_full_unstemmed Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2
title_sort understanding changes in cloud simulations from e3sm version 1 to version 2
publishDate 2024
url https://doi.org/10.5194/egusphere-2023-1263
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1263/
geographic Southern Ocean
geographic_facet Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_source eISSN:
op_relation doi:10.5194/egusphere-2023-1263
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1263/
op_doi https://doi.org/10.5194/egusphere-2023-1263
_version_ 1790608518688014336