The impact of rising atmospheric CO2 levels and resulting ocean acidification on the physical (solubility) ocean pump of CO2

An alternative measure of the ocean’s carbonate buffer system efficiency to absorb CO 2 from the atmosphere is proposed. Instead of the Revelle factor R = (∆CO2/CO2)/(∆DIC/DIC) = (DIC/CO2)/ (∆DIC/∆CO2) the sensitivity S = (∆DIC/∆CO2) is preferable because it gives directly the change ∆DIC of the con...

Full description

Bibliographic Details
Main Author: Dreybrodt, Wolfgang
Format: Text
Language:English
Published: 2023
Subjects:
Online Access:https://doi.org/10.5194/egusphere-2023-1004
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1004/
id ftcopernicus:oai:publications.copernicus.org:egusphere111516
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:egusphere111516 2023-06-18T03:42:31+02:00 The impact of rising atmospheric CO2 levels and resulting ocean acidification on the physical (solubility) ocean pump of CO2 Dreybrodt, Wolfgang 2023-05-30 application/pdf https://doi.org/10.5194/egusphere-2023-1004 https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1004/ eng eng doi:10.5194/egusphere-2023-1004 https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1004/ eISSN: Text 2023 ftcopernicus https://doi.org/10.5194/egusphere-2023-1004 2023-06-05T16:24:03Z An alternative measure of the ocean’s carbonate buffer system efficiency to absorb CO 2 from the atmosphere is proposed. Instead of the Revelle factor R = (∆CO2/CO2)/(∆DIC/DIC) = (DIC/CO2)/ (∆DIC/∆CO2) the sensitivity S = (∆DIC/∆CO2) is preferable because it gives directly the change ∆DIC of the concentration of DIC in the seawater caused by the change ∆CO2 of carbon dioxide in the atmosphere. To this end the DIC concentration of seawater at temperature T in equilibrium with a defined CO 2 level in the surrounding atmosphere is calculated by use of the geochemical program PHREEQC. From the function DIC(CO2,T) one obtains by differentiation the sensitivity S = dDIC/dCO2 = ∆DIC/∆CO2 and also the Revelle factor R. Using S as the change of the ocean’s buffer capacity reveals a better insight of its future evolution than using the Revelle factor R. One finds that the buffer capacity S has declined by about 30 % from 1945 to present and that its future decline from 400 to 600 ppm will be a further 30 %. By calculating the uptake of CO 2 of his equilibrium pump an upper value of 1.3 Gigatons/year is obtained, small in comparison to the 10 Gigatons/year absorbed by the ocean at present. The Revelle factor R at present is calculated R = 13 and rises to 18 at a CO 2 level of 800 ppm. This increase of R has been interpreted as indication of the collapse of the solubility pump. S and R, however, are defined from equilibrium chemistry and are a measure of the CO 2 absorbed by the ocean’s upper mixed layer by increase of the CO 2 level in the atmosphere without regarding its sinking into the deep-ocean by the thermohaline circulation. The difference ∆DIC between the actual value and the value at 280 ppm is transported into the deep-ocean by the global meridional conveyor belt. ∆DIC increases with increasing CO 2 level. At 280 ppm the system ocean-atmosphere is in equilibrium and the sink is zero. At 400 ppm a value of about 1.9 Gtons/year is estimated that increases to 3.9 Gtons/year at 600 ppm and to 5 Gtons/year at 800 ppm. ... Text Ocean acidification Copernicus Publications: E-Journals
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description An alternative measure of the ocean’s carbonate buffer system efficiency to absorb CO 2 from the atmosphere is proposed. Instead of the Revelle factor R = (∆CO2/CO2)/(∆DIC/DIC) = (DIC/CO2)/ (∆DIC/∆CO2) the sensitivity S = (∆DIC/∆CO2) is preferable because it gives directly the change ∆DIC of the concentration of DIC in the seawater caused by the change ∆CO2 of carbon dioxide in the atmosphere. To this end the DIC concentration of seawater at temperature T in equilibrium with a defined CO 2 level in the surrounding atmosphere is calculated by use of the geochemical program PHREEQC. From the function DIC(CO2,T) one obtains by differentiation the sensitivity S = dDIC/dCO2 = ∆DIC/∆CO2 and also the Revelle factor R. Using S as the change of the ocean’s buffer capacity reveals a better insight of its future evolution than using the Revelle factor R. One finds that the buffer capacity S has declined by about 30 % from 1945 to present and that its future decline from 400 to 600 ppm will be a further 30 %. By calculating the uptake of CO 2 of his equilibrium pump an upper value of 1.3 Gigatons/year is obtained, small in comparison to the 10 Gigatons/year absorbed by the ocean at present. The Revelle factor R at present is calculated R = 13 and rises to 18 at a CO 2 level of 800 ppm. This increase of R has been interpreted as indication of the collapse of the solubility pump. S and R, however, are defined from equilibrium chemistry and are a measure of the CO 2 absorbed by the ocean’s upper mixed layer by increase of the CO 2 level in the atmosphere without regarding its sinking into the deep-ocean by the thermohaline circulation. The difference ∆DIC between the actual value and the value at 280 ppm is transported into the deep-ocean by the global meridional conveyor belt. ∆DIC increases with increasing CO 2 level. At 280 ppm the system ocean-atmosphere is in equilibrium and the sink is zero. At 400 ppm a value of about 1.9 Gtons/year is estimated that increases to 3.9 Gtons/year at 600 ppm and to 5 Gtons/year at 800 ppm. ...
format Text
author Dreybrodt, Wolfgang
spellingShingle Dreybrodt, Wolfgang
The impact of rising atmospheric CO2 levels and resulting ocean acidification on the physical (solubility) ocean pump of CO2
author_facet Dreybrodt, Wolfgang
author_sort Dreybrodt, Wolfgang
title The impact of rising atmospheric CO2 levels and resulting ocean acidification on the physical (solubility) ocean pump of CO2
title_short The impact of rising atmospheric CO2 levels and resulting ocean acidification on the physical (solubility) ocean pump of CO2
title_full The impact of rising atmospheric CO2 levels and resulting ocean acidification on the physical (solubility) ocean pump of CO2
title_fullStr The impact of rising atmospheric CO2 levels and resulting ocean acidification on the physical (solubility) ocean pump of CO2
title_full_unstemmed The impact of rising atmospheric CO2 levels and resulting ocean acidification on the physical (solubility) ocean pump of CO2
title_sort impact of rising atmospheric co2 levels and resulting ocean acidification on the physical (solubility) ocean pump of co2
publishDate 2023
url https://doi.org/10.5194/egusphere-2023-1004
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1004/
genre Ocean acidification
genre_facet Ocean acidification
op_source eISSN:
op_relation doi:10.5194/egusphere-2023-1004
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1004/
op_doi https://doi.org/10.5194/egusphere-2023-1004
_version_ 1769008480794968064