Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes

Winter near-surface temperatures have important implications for ecosystem functioning such as vegetation dynamics and carbon cycling. In cold environments, seasonal snow cover can exert a strong control on the surface temperatures. However, the lack of in situ measurements of both snow cover and su...

Full description

Bibliographic Details
Main Authors: Tyystjärvi, Vilna Aleksandra, Niittynen, Pekka, Kemppinen, Julia, Luoto, Miska, Rissanen, Tuuli, Aalto, Juha
Format: Text
Language:English
Published: 2023
Subjects:
Online Access:https://doi.org/10.5194/egusphere-2023-576
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-576/
id ftcopernicus:oai:publications.copernicus.org:egusphere110400
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:egusphere110400 2023-06-11T04:17:23+02:00 Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes Tyystjärvi, Vilna Aleksandra Niittynen, Pekka Kemppinen, Julia Luoto, Miska Rissanen, Tuuli Aalto, Juha 2023-04-19 application/pdf https://doi.org/10.5194/egusphere-2023-576 https://egusphere.copernicus.org/preprints/2023/egusphere-2023-576/ eng eng doi:10.5194/egusphere-2023-576 https://egusphere.copernicus.org/preprints/2023/egusphere-2023-576/ eISSN: Text 2023 ftcopernicus https://doi.org/10.5194/egusphere-2023-576 2023-04-24T16:23:13Z Winter near-surface temperatures have important implications for ecosystem functioning such as vegetation dynamics and carbon cycling. In cold environments, seasonal snow cover can exert a strong control on the surface temperatures. However, the lack of in situ measurements of both snow cover and surface temperatures over high latitudes has made it difficult to estimate the spatio-temporal variability of this relationship. Here, we quantified the fine-scale variability of winter near-surface temperatures (+2 cm) and snow cover duration using a total of 441 microclimate loggers in seven study areas across boreal and tundra landscapes during 2019–2021. We further examined the drivers behind this variation and the extent to which surface temperatures are buffered from air temperatures during winter. Our results show that while average winter near-surface temperatures stay close to 0 ° C across the study domain, there are large differences in their fine-scale variability among the study areas. Areas with large topographical variation, as well as areas with shallow snowpacks, showed the greatest variation in near-surface temperatures and in the insulating effect of snow cover. In the tundra, for example, differences in minimum near-surface temperatures were close to 30 ° C. In contrast, flat topography and deep snow cover lead to little spatial variation and decoupling of the near-surface and air temperatures. Quantifying and understanding the landscape-wide variation in winter microclimates improves our ability to predict the local effects of climate change in the rapidly warming boreal and tundra regions. Text Tundra Copernicus Publications: E-Journals
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Winter near-surface temperatures have important implications for ecosystem functioning such as vegetation dynamics and carbon cycling. In cold environments, seasonal snow cover can exert a strong control on the surface temperatures. However, the lack of in situ measurements of both snow cover and surface temperatures over high latitudes has made it difficult to estimate the spatio-temporal variability of this relationship. Here, we quantified the fine-scale variability of winter near-surface temperatures (+2 cm) and snow cover duration using a total of 441 microclimate loggers in seven study areas across boreal and tundra landscapes during 2019–2021. We further examined the drivers behind this variation and the extent to which surface temperatures are buffered from air temperatures during winter. Our results show that while average winter near-surface temperatures stay close to 0 ° C across the study domain, there are large differences in their fine-scale variability among the study areas. Areas with large topographical variation, as well as areas with shallow snowpacks, showed the greatest variation in near-surface temperatures and in the insulating effect of snow cover. In the tundra, for example, differences in minimum near-surface temperatures were close to 30 ° C. In contrast, flat topography and deep snow cover lead to little spatial variation and decoupling of the near-surface and air temperatures. Quantifying and understanding the landscape-wide variation in winter microclimates improves our ability to predict the local effects of climate change in the rapidly warming boreal and tundra regions.
format Text
author Tyystjärvi, Vilna Aleksandra
Niittynen, Pekka
Kemppinen, Julia
Luoto, Miska
Rissanen, Tuuli
Aalto, Juha
spellingShingle Tyystjärvi, Vilna Aleksandra
Niittynen, Pekka
Kemppinen, Julia
Luoto, Miska
Rissanen, Tuuli
Aalto, Juha
Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
author_facet Tyystjärvi, Vilna Aleksandra
Niittynen, Pekka
Kemppinen, Julia
Luoto, Miska
Rissanen, Tuuli
Aalto, Juha
author_sort Tyystjärvi, Vilna Aleksandra
title Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
title_short Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
title_full Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
title_fullStr Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
title_full_unstemmed Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
title_sort variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
publishDate 2023
url https://doi.org/10.5194/egusphere-2023-576
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-576/
genre Tundra
genre_facet Tundra
op_source eISSN:
op_relation doi:10.5194/egusphere-2023-576
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-576/
op_doi https://doi.org/10.5194/egusphere-2023-576
_version_ 1768376524377948160