Simulation of ash clouds after a Laacher See-type eruption

Dated to ca. 13,000 years ago, the Laacher See (East Eifel Volcanic Zone) eruption was one of the largest mid-latitude Northern Hemisphere volcanic events of the Late Pleistocene. This eruptive event not only impacted local environments and human communities but also NH climate. We have simulated th...

Full description

Bibliographic Details
Main Authors: Niemeier, Ulrike, Riede, Felix, Timmreck, Claudia
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/cp-2020-109
https://cp.copernicus.org/preprints/cp-2020-109/
id ftcopernicus:oai:publications.copernicus.org:cpd89222
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:cpd89222 2023-05-15T15:17:05+02:00 Simulation of ash clouds after a Laacher See-type eruption Niemeier, Ulrike Riede, Felix Timmreck, Claudia 2020-09-09 application/pdf https://doi.org/10.5194/cp-2020-109 https://cp.copernicus.org/preprints/cp-2020-109/ eng eng doi:10.5194/cp-2020-109 https://cp.copernicus.org/preprints/cp-2020-109/ eISSN: 1814-9332 Text 2020 ftcopernicus https://doi.org/10.5194/cp-2020-109 2020-09-14T16:22:13Z Dated to ca. 13,000 years ago, the Laacher See (East Eifel Volcanic Zone) eruption was one of the largest mid-latitude Northern Hemisphere volcanic events of the Late Pleistocene. This eruptive event not only impacted local environments and human communities but also NH climate. We have simulated the evolution of the fine ash and sulfur cloud of an LSE-type eruption under present-day meteorological conditions that mirror the empirically known ash transport distribution as derived from geological, palaeo-ecological and archaeological evidence linked directly to the Late Pleistocene eruption of the Laacher See volcano. This evidence has informed our experimental set-up and we simulated corresponding eruptions of different injection altitudes (30, 60 and, 100 hPa) with varying emission strengths of sulfur and fine ash (1.5, 15, 100 Tg SO 2 ) and at different days in spring. The chosen eruption dates were determined by the stratospheric wind fields to reflect the empirically observed ash lobes. While it proved difficult to replicate the meteorological conditions that likely prevailed 13,000 years ago, our novel simulations suggest that the heating of the ash plays a crucial role for the transport of ash and sulfate. Depending on the altitude of the injection, the volcanic cloud begins to rotate one to three days after the eruption. The rotation, as well as the additional radiative heating of the fine ash, adds a southerly component to the transport vectors. This ash cloud-generated southerly migration process may at least partially explain why, as yet, no Laacher See tephra has been found in Greenlandic ice-cores. Sulfate transport, too, is impacted by the heating of the ash, resulting in a stronger transport to low-latitudes, later arrival of the volcanic cloud in the Arctic regions and, a longer lifetime. Our models throw new light on the likely behaviour of the ash cloud that darkened European skies at the end of the Pleistocene, and serve as significant input for scenarios that consider the risks associated with re-awakened volcanism in the Eifel. Text Arctic greenlandic Copernicus Publications: E-Journals Arctic
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Dated to ca. 13,000 years ago, the Laacher See (East Eifel Volcanic Zone) eruption was one of the largest mid-latitude Northern Hemisphere volcanic events of the Late Pleistocene. This eruptive event not only impacted local environments and human communities but also NH climate. We have simulated the evolution of the fine ash and sulfur cloud of an LSE-type eruption under present-day meteorological conditions that mirror the empirically known ash transport distribution as derived from geological, palaeo-ecological and archaeological evidence linked directly to the Late Pleistocene eruption of the Laacher See volcano. This evidence has informed our experimental set-up and we simulated corresponding eruptions of different injection altitudes (30, 60 and, 100 hPa) with varying emission strengths of sulfur and fine ash (1.5, 15, 100 Tg SO 2 ) and at different days in spring. The chosen eruption dates were determined by the stratospheric wind fields to reflect the empirically observed ash lobes. While it proved difficult to replicate the meteorological conditions that likely prevailed 13,000 years ago, our novel simulations suggest that the heating of the ash plays a crucial role for the transport of ash and sulfate. Depending on the altitude of the injection, the volcanic cloud begins to rotate one to three days after the eruption. The rotation, as well as the additional radiative heating of the fine ash, adds a southerly component to the transport vectors. This ash cloud-generated southerly migration process may at least partially explain why, as yet, no Laacher See tephra has been found in Greenlandic ice-cores. Sulfate transport, too, is impacted by the heating of the ash, resulting in a stronger transport to low-latitudes, later arrival of the volcanic cloud in the Arctic regions and, a longer lifetime. Our models throw new light on the likely behaviour of the ash cloud that darkened European skies at the end of the Pleistocene, and serve as significant input for scenarios that consider the risks associated with re-awakened volcanism in the Eifel.
format Text
author Niemeier, Ulrike
Riede, Felix
Timmreck, Claudia
spellingShingle Niemeier, Ulrike
Riede, Felix
Timmreck, Claudia
Simulation of ash clouds after a Laacher See-type eruption
author_facet Niemeier, Ulrike
Riede, Felix
Timmreck, Claudia
author_sort Niemeier, Ulrike
title Simulation of ash clouds after a Laacher See-type eruption
title_short Simulation of ash clouds after a Laacher See-type eruption
title_full Simulation of ash clouds after a Laacher See-type eruption
title_fullStr Simulation of ash clouds after a Laacher See-type eruption
title_full_unstemmed Simulation of ash clouds after a Laacher See-type eruption
title_sort simulation of ash clouds after a laacher see-type eruption
publishDate 2020
url https://doi.org/10.5194/cp-2020-109
https://cp.copernicus.org/preprints/cp-2020-109/
geographic Arctic
geographic_facet Arctic
genre Arctic
greenlandic
genre_facet Arctic
greenlandic
op_source eISSN: 1814-9332
op_relation doi:10.5194/cp-2020-109
https://cp.copernicus.org/preprints/cp-2020-109/
op_doi https://doi.org/10.5194/cp-2020-109
_version_ 1766347365116018688