Nordic Seas Deep-Water susceptible to enhanced freshwater export to the subpolar North Atlantic during peak MIS 11

Recent investigations into Marine Isotope Stage (MIS) 11 (424–403 ka), an unusually long and warm interglacial of the Quaternary Period, have found that the Atlantic Meridional Overturning Circulation remained strong while background melting of the Greenland Ice-Sheet (GIS) was high, and r...

Full description

Bibliographic Details
Main Authors: Curran, Michelle J., Colin, Christophe, Murphy O’Connor, Megan, Ninnemann, Ulysses S., Morley, Audrey
Format: Text
Language:English
Published: 2024
Subjects:
Online Access:https://doi.org/10.5194/cp-2023-101
https://cp.copernicus.org/preprints/cp-2023-101/
id ftcopernicus:oai:publications.copernicus.org:cpd116583
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:cpd116583 2024-09-15T18:10:05+00:00 Nordic Seas Deep-Water susceptible to enhanced freshwater export to the subpolar North Atlantic during peak MIS 11 Curran, Michelle J. Colin, Christophe Murphy O’Connor, Megan Ninnemann, Ulysses S. Morley, Audrey 2024-01-04 application/pdf https://doi.org/10.5194/cp-2023-101 https://cp.copernicus.org/preprints/cp-2023-101/ eng eng doi:10.5194/cp-2023-101 https://cp.copernicus.org/preprints/cp-2023-101/ eISSN: 1814-9332 Text 2024 ftcopernicus https://doi.org/10.5194/cp-2023-101 2024-08-28T05:24:15Z Recent investigations into Marine Isotope Stage (MIS) 11 (424–403 ka), an unusually long and warm interglacial of the Quaternary Period, have found that the Atlantic Meridional Overturning Circulation remained strong while background melting of the Greenland Ice-Sheet (GIS) was high, and resulted in a fresh and cold surface ocean in the Nordic Seas. These investigations support the hypothesis that deep-water formation may not be as susceptible to future GIS melting as previously thought. Here we test this hypothesis and present a palaeoceanographic investigation of a freshwater-related abrupt climate event recorded in the eastern North Atlantic during peak interglacial conditions (~412 ka), when the GIS was as small or smaller than today. Using sediment core DSDP-610B recovered from the western Rockall Trough we reconstruct the evolution of Nordic Seas Deep-Water (NSDW) using benthic carbon isotope, Neodymium isotopes, and grain-size analysis paired with end-member modelling. Further, a combination of planktonic foraminiferal assemblage census and Ice-Rafted Debris counts allow us to reconstruct surface water properties including temperature and the movement of oceanic fronts throughout this event. Our results demonstrate that a reduction of NSDW only occurs once GIS melt and polar freshwater reaches subpolar latitudes. We hypothesise that the reorganisation of fresh and cold surface waters from the Nordic Seas into the subpolar North Atlantic was responsible for an AMOC-related cold event centred at 412 ka. Placing our results in the palaeogeographical context of the North Atlantic Region we tentatively propose that the ocean-atmosphere climate dynamics linking the Nordic Seas with the subpolar North Atlantic played and will play a crucial role for the stability of NSDW formation in the future, considering the enhanced melting and overall hydrological cycle at high Northern latitudes predicted for future climate scenarios. Text Greenland Ice Sheet Nordic Seas North Atlantic Copernicus Publications: E-Journals
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Recent investigations into Marine Isotope Stage (MIS) 11 (424–403 ka), an unusually long and warm interglacial of the Quaternary Period, have found that the Atlantic Meridional Overturning Circulation remained strong while background melting of the Greenland Ice-Sheet (GIS) was high, and resulted in a fresh and cold surface ocean in the Nordic Seas. These investigations support the hypothesis that deep-water formation may not be as susceptible to future GIS melting as previously thought. Here we test this hypothesis and present a palaeoceanographic investigation of a freshwater-related abrupt climate event recorded in the eastern North Atlantic during peak interglacial conditions (~412 ka), when the GIS was as small or smaller than today. Using sediment core DSDP-610B recovered from the western Rockall Trough we reconstruct the evolution of Nordic Seas Deep-Water (NSDW) using benthic carbon isotope, Neodymium isotopes, and grain-size analysis paired with end-member modelling. Further, a combination of planktonic foraminiferal assemblage census and Ice-Rafted Debris counts allow us to reconstruct surface water properties including temperature and the movement of oceanic fronts throughout this event. Our results demonstrate that a reduction of NSDW only occurs once GIS melt and polar freshwater reaches subpolar latitudes. We hypothesise that the reorganisation of fresh and cold surface waters from the Nordic Seas into the subpolar North Atlantic was responsible for an AMOC-related cold event centred at 412 ka. Placing our results in the palaeogeographical context of the North Atlantic Region we tentatively propose that the ocean-atmosphere climate dynamics linking the Nordic Seas with the subpolar North Atlantic played and will play a crucial role for the stability of NSDW formation in the future, considering the enhanced melting and overall hydrological cycle at high Northern latitudes predicted for future climate scenarios.
format Text
author Curran, Michelle J.
Colin, Christophe
Murphy O’Connor, Megan
Ninnemann, Ulysses S.
Morley, Audrey
spellingShingle Curran, Michelle J.
Colin, Christophe
Murphy O’Connor, Megan
Ninnemann, Ulysses S.
Morley, Audrey
Nordic Seas Deep-Water susceptible to enhanced freshwater export to the subpolar North Atlantic during peak MIS 11
author_facet Curran, Michelle J.
Colin, Christophe
Murphy O’Connor, Megan
Ninnemann, Ulysses S.
Morley, Audrey
author_sort Curran, Michelle J.
title Nordic Seas Deep-Water susceptible to enhanced freshwater export to the subpolar North Atlantic during peak MIS 11
title_short Nordic Seas Deep-Water susceptible to enhanced freshwater export to the subpolar North Atlantic during peak MIS 11
title_full Nordic Seas Deep-Water susceptible to enhanced freshwater export to the subpolar North Atlantic during peak MIS 11
title_fullStr Nordic Seas Deep-Water susceptible to enhanced freshwater export to the subpolar North Atlantic during peak MIS 11
title_full_unstemmed Nordic Seas Deep-Water susceptible to enhanced freshwater export to the subpolar North Atlantic during peak MIS 11
title_sort nordic seas deep-water susceptible to enhanced freshwater export to the subpolar north atlantic during peak mis 11
publishDate 2024
url https://doi.org/10.5194/cp-2023-101
https://cp.copernicus.org/preprints/cp-2023-101/
genre Greenland
Ice Sheet
Nordic Seas
North Atlantic
genre_facet Greenland
Ice Sheet
Nordic Seas
North Atlantic
op_source eISSN: 1814-9332
op_relation doi:10.5194/cp-2023-101
https://cp.copernicus.org/preprints/cp-2023-101/
op_doi https://doi.org/10.5194/cp-2023-101
_version_ 1810447692989464576