Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate

The end of the Pleistocene was a turning point for the Earth system as climate gradually emerged from millennia of severe glaciation in the Northern Hemisphere. The deglacial climate change coincided with an unprecedented decline in many species of Pleistocene megafauna, including the near-total era...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Brault, M.-O., Mysak, L. A., Matthews, H. D., Simmons, C. T.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/cp-9-1761-2013
https://cp.copernicus.org/articles/9/1761/2013/
id ftcopernicus:oai:publications.copernicus.org:cp17729
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:cp17729 2023-05-15T18:40:42+02:00 Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate Brault, M.-O. Mysak, L. A. Matthews, H. D. Simmons, C. T. 2018-09-27 application/pdf https://doi.org/10.5194/cp-9-1761-2013 https://cp.copernicus.org/articles/9/1761/2013/ eng eng doi:10.5194/cp-9-1761-2013 https://cp.copernicus.org/articles/9/1761/2013/ eISSN: 1814-9332 Text 2018 ftcopernicus https://doi.org/10.5194/cp-9-1761-2013 2020-07-20T16:25:24Z The end of the Pleistocene was a turning point for the Earth system as climate gradually emerged from millennia of severe glaciation in the Northern Hemisphere. The deglacial climate change coincided with an unprecedented decline in many species of Pleistocene megafauna, including the near-total eradication of the woolly mammoth. Due to an herbivorous diet that presumably involved large-scale tree grazing, the mammoth extinction has been associated with the rapid expansion of dwarf deciduous trees in Siberia and Beringia, thus potentially contributing to the changing climate of the period. In this study, we use the University of Victoria Earth System Climate Model (UVic ESCM) to simulate the possible effects of these extinctions on climate during the latest deglacial period. We have explored various hypothetical scenarios of forest expansion in the northern high latitudes, quantifying the biogeophysical effects in terms of changes in surface albedo and air temperature. These scenarios include a Maximum Impact Scenario (MIS) which simulates the greatest possible post-extinction reforestation in the model, and sensitivity tests which investigate the timing of extinction, the fraction of trees grazed by mammoths, and the southern extent of mammoth habitats. We also show the results of a simulation with free atmospheric CO 2 -carbon cycle interactions. For the MIS, we obtained a surface albedo increase and global warming of 0.006 and 0.175 °C, respectively. Less extreme scenarios produced smaller global mean temperature changes, though local warming in some locations exceeded 0.3 °C even in the more realistic extinction scenarios. In the free CO 2 simulation, the biogeophysical-induced warming was amplified by a biogeochemical effect, whereby the replacement of high-latitude tundra with shrub forest led to a release of soil carbon to the atmosphere and a small atmospheric CO 2 increase. Overall, our results suggest the potential for a small, though non-trivial, effect of megafaunal extinctions on Pleistocene climate. Text Tundra Beringia Siberia Copernicus Publications: E-Journals Climate of the Past 9 4 1761 1771
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The end of the Pleistocene was a turning point for the Earth system as climate gradually emerged from millennia of severe glaciation in the Northern Hemisphere. The deglacial climate change coincided with an unprecedented decline in many species of Pleistocene megafauna, including the near-total eradication of the woolly mammoth. Due to an herbivorous diet that presumably involved large-scale tree grazing, the mammoth extinction has been associated with the rapid expansion of dwarf deciduous trees in Siberia and Beringia, thus potentially contributing to the changing climate of the period. In this study, we use the University of Victoria Earth System Climate Model (UVic ESCM) to simulate the possible effects of these extinctions on climate during the latest deglacial period. We have explored various hypothetical scenarios of forest expansion in the northern high latitudes, quantifying the biogeophysical effects in terms of changes in surface albedo and air temperature. These scenarios include a Maximum Impact Scenario (MIS) which simulates the greatest possible post-extinction reforestation in the model, and sensitivity tests which investigate the timing of extinction, the fraction of trees grazed by mammoths, and the southern extent of mammoth habitats. We also show the results of a simulation with free atmospheric CO 2 -carbon cycle interactions. For the MIS, we obtained a surface albedo increase and global warming of 0.006 and 0.175 °C, respectively. Less extreme scenarios produced smaller global mean temperature changes, though local warming in some locations exceeded 0.3 °C even in the more realistic extinction scenarios. In the free CO 2 simulation, the biogeophysical-induced warming was amplified by a biogeochemical effect, whereby the replacement of high-latitude tundra with shrub forest led to a release of soil carbon to the atmosphere and a small atmospheric CO 2 increase. Overall, our results suggest the potential for a small, though non-trivial, effect of megafaunal extinctions on Pleistocene climate.
format Text
author Brault, M.-O.
Mysak, L. A.
Matthews, H. D.
Simmons, C. T.
spellingShingle Brault, M.-O.
Mysak, L. A.
Matthews, H. D.
Simmons, C. T.
Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate
author_facet Brault, M.-O.
Mysak, L. A.
Matthews, H. D.
Simmons, C. T.
author_sort Brault, M.-O.
title Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate
title_short Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate
title_full Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate
title_fullStr Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate
title_full_unstemmed Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate
title_sort assessing the impact of late pleistocene megafaunal extinctions on global vegetation and climate
publishDate 2018
url https://doi.org/10.5194/cp-9-1761-2013
https://cp.copernicus.org/articles/9/1761/2013/
genre Tundra
Beringia
Siberia
genre_facet Tundra
Beringia
Siberia
op_source eISSN: 1814-9332
op_relation doi:10.5194/cp-9-1761-2013
https://cp.copernicus.org/articles/9/1761/2013/
op_doi https://doi.org/10.5194/cp-9-1761-2013
container_title Climate of the Past
container_volume 9
container_issue 4
container_start_page 1761
op_container_end_page 1771
_version_ 1766230102974136320