The impact of land-fast ice on the distribution of terrestrial dissolved organic matter in the Siberian Arctic shelf seas
Remobilization of soil carbon as a result of permafrost degradation in the drainage basin of the major Siberian rivers combined with higher precipitation in a warming climate potentially increase the flux of terrestrial derived dissolved organic matter (tDOM) into the Arctic Ocean. The Laptev (LS) a...
Main Authors: | , , , , , |
---|---|
Format: | Text |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://doi.org/10.5194/bg-2020-462 https://bg.copernicus.org/preprints/bg-2020-462/ |
Summary: | Remobilization of soil carbon as a result of permafrost degradation in the drainage basin of the major Siberian rivers combined with higher precipitation in a warming climate potentially increase the flux of terrestrial derived dissolved organic matter (tDOM) into the Arctic Ocean. The Laptev (LS) and East Siberian Seas (ESS) receive enormous amounts of tDOM-rich river water, which undergoes at least one freeze-melt cycle in the Siberian Arctic shelf seas. To better understand how freezing and melting affect the tDOM dynamics in the LS and ESS, we sampled sea ice, river and seawater for their dissolved organic carbon (DOC) concentration and the colored fraction of dissolved organic matter. The sampling took place in different seasons over a period of 9 years (2010–2019). Our results suggest that the main factor regulating the tDOM distribution in the LS and ESS is the mixing of marine waters with freshwater sources carrying different tDOM concentrations. Of particular importance in this context are the 211 km 3 of meltwater from land-fast ice from the LS, containing ~ 0.3 Tg DOC, which in spring mixes with 245 km 3 of river water from the peak spring discharge of the Lena River, carrying ~ 2.4 Tg DOC into the LS. During the ice-free season, tDOM transport on the shelves takes place in the surface mixed layer, with the direction of transport depending on the prevailing wind direction. In winter, about 1.2 Tg of brine-related DOC, which was expelled from the growing land-fast ice in the LS, is transported in the near-surface water layer into the Transpolar Drift Stream that flows from the Siberian Shelf toward Greenland. The actual water depth in which the tDOM-rich brines are transported, depends mainly on the density stratification of the LS and ESS in the preceding summer and the amount of ice produced in winter. We suspect that climate change in the Arctic will fundamentally alter the dynamics of tDOM transport in the Arctic marginal seas, which will also have consequences for the Arctic carbon cycle. |
---|