Ocean acidification reduces growth and grazing of Antarctic heterotrophic nanoflagellates

High-latitude oceans have been identified as particularly vulnerable to ocean acidification if anthropogenic CO 2 emissions continue. Marine microbes are an essential part of the marine food web and are a critical link in biogeochemical processes in the ocean, such as the cycling of nutrients and ca...

Full description

Bibliographic Details
Main Authors: Deppeler, Stacy, Schulz, Kai G., Hancock, Alyce, Pascoe, Penelope, McKinlay, John, Davidson, Andrew
Format: Text
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.5194/bg-2019-224
https://www.biogeosciences-discuss.net/bg-2019-224/
Description
Summary:High-latitude oceans have been identified as particularly vulnerable to ocean acidification if anthropogenic CO 2 emissions continue. Marine microbes are an essential part of the marine food web and are a critical link in biogeochemical processes in the ocean, such as the cycling of nutrients and carbon. Despite this, the response of Antarctic marine microbial communities to ocean acidification is poorly understood. We investigated the effect of increasing f CO 2 on the growth of heterotrophic nanoflagellates (HNF), nano- and picophytoplankton, and prokaryotes in a natural coastal Antarctic marine microbial community from Prydz Bay, East Antarctica. At CO 2 levels ≥ 634 μatm, HNF abundance was reduced, coinciding with significantly increased abundance of picophytoplankton and prokaryotes. This increase in picophytoplankton and prokaryote abundance was likely due to a reduction in top-down control of grazing HNF. Nanophytoplankton abundance was significantly elevated in the 634 and 953 μatm treatments, suggesting that moderate increases in CO 2 may stimulate growth. Changes in predator-prey interactions with ocean acidification could have a significant effect on the food web and biogeochemistry in the Southern Ocean. Based on these results, it is likely that the phytoplankton community composition in these waters will shift to communities dominated by prokaryotes, nano- and picophytoplankton. This may intensify organic matter recycling in surface waters, leading to a decline in carbon flux, as well as a reducing the quality and quantity of food available to higher trophic organisms.