Passive adsorption of neighbouring plant volatiles linked to associational susceptibility in a subarctic ecosystem

Neighbouring plants may affect volatile compound emissions of a focal plant and confer associational resistance or susceptibility. Associational resistance has been reported as a result of adsorption of neighbouring plant volatile and semivolatile compounds on focal plant foliage in field experiment...

Full description

Bibliographic Details
Main Authors: Mofikoya, Adedayo, Miura, Kazumi, Holopainen, Toini, Holopainen, Jarmo K.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/bg-2016-464
https://www.biogeosciences-discuss.net/bg-2016-464/
id ftcopernicus:oai:publications.copernicus.org:bgd55583
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:bgd55583 2023-05-15T18:28:05+02:00 Passive adsorption of neighbouring plant volatiles linked to associational susceptibility in a subarctic ecosystem Mofikoya, Adedayo Miura, Kazumi Holopainen, Toini Holopainen, Jarmo K. 2018-09-26 application/pdf https://doi.org/10.5194/bg-2016-464 https://www.biogeosciences-discuss.net/bg-2016-464/ eng eng doi:10.5194/bg-2016-464 https://www.biogeosciences-discuss.net/bg-2016-464/ eISSN: 1726-4189 Text 2018 ftcopernicus https://doi.org/10.5194/bg-2016-464 2019-12-24T09:51:50Z Neighbouring plants may affect volatile compound emissions of a focal plant and confer associational resistance or susceptibility. Associational resistance has been reported as a result of adsorption of neighbouring plant volatile and semivolatile compounds on focal plant foliage in field experiments. However, these associational effects in a natural ecosystem remain largely unknown. The effects of the presence and density of Rhododendron tomentosum ( Rt ) understorey on the volatile profile and herbivore density of mountain birch, Betula pubescens ssp. czerepanovii (MB) was investigated in a subarctic forest site. The monoterpene β-myrcene, sesquiterpene aromadendrene and sesquiterpene alcohols, palustrol and ledol were recovered from the foliage of MB trees that had Rt growing in the understorey. The number of Rt shoots growing directly under the MB trees correlated positively with the rate of recovery of adhered compounds and negatively with total MB emissions. Palustrol and β-myrcene recovery from MB leaves showed the highest positive correlation with Rt density. Recovery of adhered compounds was higher at lower sampling temperatures. Herbivory was at very low levels both in control and Rt plots. The proportion of foliage infected by a gall mites ( Acalitus spp. ) was positively correlated with the recovery of the adhered ledol and palustrol from MB foliage. These results indicate that understorey plant volatiles, both sesquiterpene and highly volatile monoterpenes, may adhere onto and be subsequently re-released from MB foliage at low temperatures during the subarctic growing season. The Rt density also plays an important role in the adherence and re-release rates of neighboring plant volatiles and may induce a response in MB volatile emission. Presence of Rt volatiles on MB foliage may make them more susceptible to gall mite infestation suggesting that high Rt density in the subarctic ecosystem may confer associational susceptibility to herbivores on MB. Text Subarctic Mite Copernicus Publications: E-Journals
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Neighbouring plants may affect volatile compound emissions of a focal plant and confer associational resistance or susceptibility. Associational resistance has been reported as a result of adsorption of neighbouring plant volatile and semivolatile compounds on focal plant foliage in field experiments. However, these associational effects in a natural ecosystem remain largely unknown. The effects of the presence and density of Rhododendron tomentosum ( Rt ) understorey on the volatile profile and herbivore density of mountain birch, Betula pubescens ssp. czerepanovii (MB) was investigated in a subarctic forest site. The monoterpene β-myrcene, sesquiterpene aromadendrene and sesquiterpene alcohols, palustrol and ledol were recovered from the foliage of MB trees that had Rt growing in the understorey. The number of Rt shoots growing directly under the MB trees correlated positively with the rate of recovery of adhered compounds and negatively with total MB emissions. Palustrol and β-myrcene recovery from MB leaves showed the highest positive correlation with Rt density. Recovery of adhered compounds was higher at lower sampling temperatures. Herbivory was at very low levels both in control and Rt plots. The proportion of foliage infected by a gall mites ( Acalitus spp. ) was positively correlated with the recovery of the adhered ledol and palustrol from MB foliage. These results indicate that understorey plant volatiles, both sesquiterpene and highly volatile monoterpenes, may adhere onto and be subsequently re-released from MB foliage at low temperatures during the subarctic growing season. The Rt density also plays an important role in the adherence and re-release rates of neighboring plant volatiles and may induce a response in MB volatile emission. Presence of Rt volatiles on MB foliage may make them more susceptible to gall mite infestation suggesting that high Rt density in the subarctic ecosystem may confer associational susceptibility to herbivores on MB.
format Text
author Mofikoya, Adedayo
Miura, Kazumi
Holopainen, Toini
Holopainen, Jarmo K.
spellingShingle Mofikoya, Adedayo
Miura, Kazumi
Holopainen, Toini
Holopainen, Jarmo K.
Passive adsorption of neighbouring plant volatiles linked to associational susceptibility in a subarctic ecosystem
author_facet Mofikoya, Adedayo
Miura, Kazumi
Holopainen, Toini
Holopainen, Jarmo K.
author_sort Mofikoya, Adedayo
title Passive adsorption of neighbouring plant volatiles linked to associational susceptibility in a subarctic ecosystem
title_short Passive adsorption of neighbouring plant volatiles linked to associational susceptibility in a subarctic ecosystem
title_full Passive adsorption of neighbouring plant volatiles linked to associational susceptibility in a subarctic ecosystem
title_fullStr Passive adsorption of neighbouring plant volatiles linked to associational susceptibility in a subarctic ecosystem
title_full_unstemmed Passive adsorption of neighbouring plant volatiles linked to associational susceptibility in a subarctic ecosystem
title_sort passive adsorption of neighbouring plant volatiles linked to associational susceptibility in a subarctic ecosystem
publishDate 2018
url https://doi.org/10.5194/bg-2016-464
https://www.biogeosciences-discuss.net/bg-2016-464/
genre Subarctic
Mite
genre_facet Subarctic
Mite
op_source eISSN: 1726-4189
op_relation doi:10.5194/bg-2016-464
https://www.biogeosciences-discuss.net/bg-2016-464/
op_doi https://doi.org/10.5194/bg-2016-464
_version_ 1766210426390970368