Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway
The weathering rate of carbonate minerals is several orders of magnitude higher than for silicate minerals. Therefore, small amounts of carbonate minerals have the potential to control the dissolved weathering loads in silicate-dominated catchments. Both weathering processes produce alkalinity under...
Main Authors: | , , , , , |
---|---|
Format: | Text |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://doi.org/10.5194/bg-2022-205 https://bg.copernicus.org/preprints/bg-2022-205/ |
id |
ftcopernicus:oai:publications.copernicus.org:bgd107031 |
---|---|
record_format |
openpolar |
spelling |
ftcopernicus:oai:publications.copernicus.org:bgd107031 2023-05-15T15:52:57+02:00 Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway Lehmann, Nele Lantuit, Hugues Böttcher, Michael Ernst Hartmann, Jens Eulenburg, Antje Thomas, Helmuth 2022-11-02 application/pdf https://doi.org/10.5194/bg-2022-205 https://bg.copernicus.org/preprints/bg-2022-205/ eng eng doi:10.5194/bg-2022-205 https://bg.copernicus.org/preprints/bg-2022-205/ eISSN: 1726-4189 Text 2022 ftcopernicus https://doi.org/10.5194/bg-2022-205 2022-11-07T17:22:42Z The weathering rate of carbonate minerals is several orders of magnitude higher than for silicate minerals. Therefore, small amounts of carbonate minerals have the potential to control the dissolved weathering loads in silicate-dominated catchments. Both weathering processes produce alkalinity under the consumption of CO 2 . Given that only alkalinity generation from silicate weathering is thought to be a long-term sink for CO 2 , a misattributed weathering source could lead to incorrect conclusions about long- and short-term CO 2 fixation. In this study, we aimed to identify the weathering sources responsible for alkalinity generation and CO 2 fixation across watershed scales in a degrading permafrost landscape in northern Norway, 68.7–70.5° N, and on a temporal scale, in a subarctic headwater catchment on the mountainside of Iskorasfjellet, characterized by sporadic permafrost and underlain mainly by silicates as the alkalinity-bearing lithology. By analysing total alkalinity (AT) and dissolved inorganic carbon (DIC) concentrations, as well as the stable isotope signature of the latter (δ 13 C-DIC) in conjunction with dissolved cation and anion loads, we found that AT was almost entirely derived from weathering of the sparse carbonate minerals. We propose that in the headwater catchment, the riparian zone is a hotspot area of AT generation and release due to its enhanced hydrological connectivity, and that the weathering load contribution from the uphill catchment is limited by insufficient contact time of weathering agent and weatherable material. By using stable water isotopes, it was possible to explain temporal variations in AT concentrations following a precipitation event due to surface runoff. In addition to carbonic acid, sulphuric acid, probably originating from pyrite oxidation, is shown to be a potential corrosive reactant. An increased proportion of sulphuric acid as a potential weathering agent may have resulted in a decrease in AT. Therefore, carbonate weathering in the studied area should be ... Text Carbonic acid Northern Norway permafrost Subarctic Copernicus Publications: E-Journals Norway |
institution |
Open Polar |
collection |
Copernicus Publications: E-Journals |
op_collection_id |
ftcopernicus |
language |
English |
description |
The weathering rate of carbonate minerals is several orders of magnitude higher than for silicate minerals. Therefore, small amounts of carbonate minerals have the potential to control the dissolved weathering loads in silicate-dominated catchments. Both weathering processes produce alkalinity under the consumption of CO 2 . Given that only alkalinity generation from silicate weathering is thought to be a long-term sink for CO 2 , a misattributed weathering source could lead to incorrect conclusions about long- and short-term CO 2 fixation. In this study, we aimed to identify the weathering sources responsible for alkalinity generation and CO 2 fixation across watershed scales in a degrading permafrost landscape in northern Norway, 68.7–70.5° N, and on a temporal scale, in a subarctic headwater catchment on the mountainside of Iskorasfjellet, characterized by sporadic permafrost and underlain mainly by silicates as the alkalinity-bearing lithology. By analysing total alkalinity (AT) and dissolved inorganic carbon (DIC) concentrations, as well as the stable isotope signature of the latter (δ 13 C-DIC) in conjunction with dissolved cation and anion loads, we found that AT was almost entirely derived from weathering of the sparse carbonate minerals. We propose that in the headwater catchment, the riparian zone is a hotspot area of AT generation and release due to its enhanced hydrological connectivity, and that the weathering load contribution from the uphill catchment is limited by insufficient contact time of weathering agent and weatherable material. By using stable water isotopes, it was possible to explain temporal variations in AT concentrations following a precipitation event due to surface runoff. In addition to carbonic acid, sulphuric acid, probably originating from pyrite oxidation, is shown to be a potential corrosive reactant. An increased proportion of sulphuric acid as a potential weathering agent may have resulted in a decrease in AT. Therefore, carbonate weathering in the studied area should be ... |
format |
Text |
author |
Lehmann, Nele Lantuit, Hugues Böttcher, Michael Ernst Hartmann, Jens Eulenburg, Antje Thomas, Helmuth |
spellingShingle |
Lehmann, Nele Lantuit, Hugues Böttcher, Michael Ernst Hartmann, Jens Eulenburg, Antje Thomas, Helmuth Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway |
author_facet |
Lehmann, Nele Lantuit, Hugues Böttcher, Michael Ernst Hartmann, Jens Eulenburg, Antje Thomas, Helmuth |
author_sort |
Lehmann, Nele |
title |
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway |
title_short |
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway |
title_full |
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway |
title_fullStr |
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway |
title_full_unstemmed |
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway |
title_sort |
alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at iskorasfjellet, northern norway |
publishDate |
2022 |
url |
https://doi.org/10.5194/bg-2022-205 https://bg.copernicus.org/preprints/bg-2022-205/ |
geographic |
Norway |
geographic_facet |
Norway |
genre |
Carbonic acid Northern Norway permafrost Subarctic |
genre_facet |
Carbonic acid Northern Norway permafrost Subarctic |
op_source |
eISSN: 1726-4189 |
op_relation |
doi:10.5194/bg-2022-205 https://bg.copernicus.org/preprints/bg-2022-205/ |
op_doi |
https://doi.org/10.5194/bg-2022-205 |
_version_ |
1766388034664660992 |