Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model

The stable carbon isotopic composition ( δ 13 C) is an important variable to study the ocean carbon cycle across different timescales. We include a new representation of the stable carbon isotope 13 C into the HAMburg Ocean Carbon Cycle model (HAMOCC), the ocean biogeochemical component of the Max P...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Liu, Bo, Six, Katharina D., Ilyina, Tatiana
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/bg-18-4389-2021
https://bg.copernicus.org/articles/18/4389/2021/
id ftcopernicus:oai:publications.copernicus.org:bg92881
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The stable carbon isotopic composition ( δ 13 C) is an important variable to study the ocean carbon cycle across different timescales. We include a new representation of the stable carbon isotope 13 C into the HAMburg Ocean Carbon Cycle model (HAMOCC), the ocean biogeochemical component of the Max Planck Institute Earth System Model (MPI-ESM). 13 C is explicitly resolved for all oceanic carbon pools considered. We account for fractionation during air–sea gas exchange and for biological fractionation ϵ p associated with photosynthetic carbon fixation during phytoplankton growth. We examine two ϵ p parameterisations of different complexity: <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Popp</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="19pt" class="svg-formula" dspmath="mathimg" md5hash="21ffb3d4283b593a5c32b93ad4c83b61"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00001.svg" width="27pt" height="19pt" src="bg-18-4389-2021-ie00001.png"/></svg:svg> varies with surface dissolved CO 2 concentration ( Popp et al. , 1989 ) , while <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Laws</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="ef0e7fefce486a332941c8042f82bff5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00002.svg" width="27pt" height="17pt" src="bg-18-4389-2021-ie00002.png"/></svg:svg> additionally depends on local phytoplankton growth rates ( Laws et al. , 1995 ) . When compared to observations of δ 13 C of dissolved inorganic carbon (DIC), both parameterisations yield similar performance. However, with regard to δ 13 C in particulate organic carbon (POC) <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Popp</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="19pt" class="svg-formula" dspmath="mathimg" md5hash="a642317d1f7c8c34fa247910c51e1ec5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00003.svg" width="27pt" height="19pt" src="bg-18-4389-2021-ie00003.png"/></svg:svg> shows a considerably improved performance compared to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Laws</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="ef117615e532cfdac081eb046738c445"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00004.svg" width="27pt" height="17pt" src="bg-18-4389-2021-ie00004.png"/></svg:svg> . This is because <math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Laws</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="f89f65639b16a81d9805bf36c55af4b8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00005.svg" width="27pt" height="17pt" src="bg-18-4389-2021-ie00005.png"/></svg:svg> produces too strong a preference for 12 C, resulting in δ 13 C POC that is too low in our model. The model also well reproduces the global oceanic anthropogenic CO 2 sink and the oceanic 13 C Suess effect, i.e. the intrusion and distribution of the isotopically light anthropogenic CO 2 in the ocean. The satisfactory model performance of the present-day oceanic δ 13 C distribution using <math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Popp</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="19pt" class="svg-formula" dspmath="mathimg" md5hash="600f5ab346414439396331297d4e8fc3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00006.svg" width="27pt" height="19pt" src="bg-18-4389-2021-ie00006.png"/></svg:svg> and of the anthropogenic CO 2 uptake allows us to further investigate the potential sources of uncertainty of the Eide et al. ( 2017 a ) approach for estimating the oceanic 13 C Suess effect. Eide et al. ( 2017 a ) derived the first global oceanic 13 C Suess effect estimate based on observations. They have noted a potential underestimation, but their approach does not provide any insight about the cause. By applying the Eide et al. ( 2017 a ) approach to the model data we are able to investigate in detail potential sources of underestimation of the 13 C Suess effect. Based on our model we find underestimations of the 13 C Suess effect at 200 m by 0.24 ‰ in the Indian Ocean, 0.21 ‰ in the North Pacific, 0.26 ‰ in the South Pacific, 0.1 ‰ in the North Atlantic and 0.14 ‰ in the South Atlantic. We attribute the major sources of underestimation to two assumptions in the Eide et al. ( 2017 a ) approach: the spatially uniform preformed component of δ 13 C DIC in year 1940 and the neglect of processes that are not directly linked to the oceanic uptake and transport of chlorofluorocarbon-12 (CFC-12) such as the decrease in δ 13 C POC over the industrial period. The new 13 C module in the ocean biogeochemical component of MPI-ESM shows satisfying performance. It is a useful tool to study the ocean carbon sink under the anthropogenic influences, and it will be applied to investigating variations of ocean carbon cycle in the past.
format Text
author Liu, Bo
Six, Katharina D.
Ilyina, Tatiana
spellingShingle Liu, Bo
Six, Katharina D.
Ilyina, Tatiana
Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
author_facet Liu, Bo
Six, Katharina D.
Ilyina, Tatiana
author_sort Liu, Bo
title Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
title_short Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
title_full Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
title_fullStr Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
title_full_unstemmed Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
title_sort incorporating the stable carbon isotope 13c in the ocean biogeochemical component of the max planck institute earth system model
publishDate 2021
url https://doi.org/10.5194/bg-18-4389-2021
https://bg.copernicus.org/articles/18/4389/2021/
long_lat ENVELOPE(6.250,6.250,62.517,62.517)
geographic Eide
Indian
Pacific
geographic_facet Eide
Indian
Pacific
genre North Atlantic
genre_facet North Atlantic
op_source eISSN: 1726-4189
op_relation doi:10.5194/bg-18-4389-2021
https://bg.copernicus.org/articles/18/4389/2021/
op_doi https://doi.org/10.5194/bg-18-4389-2021
container_title Biogeosciences
container_volume 18
container_issue 14
container_start_page 4389
op_container_end_page 4429
_version_ 1766137621932670976
spelling ftcopernicus:oai:publications.copernicus.org:bg92881 2023-05-15T17:37:35+02:00 Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model Liu, Bo Six, Katharina D. Ilyina, Tatiana 2021-07-28 application/pdf https://doi.org/10.5194/bg-18-4389-2021 https://bg.copernicus.org/articles/18/4389/2021/ eng eng doi:10.5194/bg-18-4389-2021 https://bg.copernicus.org/articles/18/4389/2021/ eISSN: 1726-4189 Text 2021 ftcopernicus https://doi.org/10.5194/bg-18-4389-2021 2021-08-02T16:22:27Z The stable carbon isotopic composition ( δ 13 C) is an important variable to study the ocean carbon cycle across different timescales. We include a new representation of the stable carbon isotope 13 C into the HAMburg Ocean Carbon Cycle model (HAMOCC), the ocean biogeochemical component of the Max Planck Institute Earth System Model (MPI-ESM). 13 C is explicitly resolved for all oceanic carbon pools considered. We account for fractionation during air–sea gas exchange and for biological fractionation ϵ p associated with photosynthetic carbon fixation during phytoplankton growth. We examine two ϵ p parameterisations of different complexity: <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Popp</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="19pt" class="svg-formula" dspmath="mathimg" md5hash="21ffb3d4283b593a5c32b93ad4c83b61"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00001.svg" width="27pt" height="19pt" src="bg-18-4389-2021-ie00001.png"/></svg:svg> varies with surface dissolved CO 2 concentration ( Popp et al. , 1989 ) , while <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Laws</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="ef0e7fefce486a332941c8042f82bff5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00002.svg" width="27pt" height="17pt" src="bg-18-4389-2021-ie00002.png"/></svg:svg> additionally depends on local phytoplankton growth rates ( Laws et al. , 1995 ) . When compared to observations of δ 13 C of dissolved inorganic carbon (DIC), both parameterisations yield similar performance. However, with regard to δ 13 C in particulate organic carbon (POC) <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Popp</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="19pt" class="svg-formula" dspmath="mathimg" md5hash="a642317d1f7c8c34fa247910c51e1ec5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00003.svg" width="27pt" height="19pt" src="bg-18-4389-2021-ie00003.png"/></svg:svg> shows a considerably improved performance compared to <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Laws</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="ef117615e532cfdac081eb046738c445"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00004.svg" width="27pt" height="17pt" src="bg-18-4389-2021-ie00004.png"/></svg:svg> . This is because <math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Laws</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="f89f65639b16a81d9805bf36c55af4b8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00005.svg" width="27pt" height="17pt" src="bg-18-4389-2021-ie00005.png"/></svg:svg> produces too strong a preference for 12 C, resulting in δ 13 C POC that is too low in our model. The model also well reproduces the global oceanic anthropogenic CO 2 sink and the oceanic 13 C Suess effect, i.e. the intrusion and distribution of the isotopically light anthropogenic CO 2 in the ocean. The satisfactory model performance of the present-day oceanic δ 13 C distribution using <math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="italic">ϵ</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">Popp</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="19pt" class="svg-formula" dspmath="mathimg" md5hash="600f5ab346414439396331297d4e8fc3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4389-2021-ie00006.svg" width="27pt" height="19pt" src="bg-18-4389-2021-ie00006.png"/></svg:svg> and of the anthropogenic CO 2 uptake allows us to further investigate the potential sources of uncertainty of the Eide et al. ( 2017 a ) approach for estimating the oceanic 13 C Suess effect. Eide et al. ( 2017 a ) derived the first global oceanic 13 C Suess effect estimate based on observations. They have noted a potential underestimation, but their approach does not provide any insight about the cause. By applying the Eide et al. ( 2017 a ) approach to the model data we are able to investigate in detail potential sources of underestimation of the 13 C Suess effect. Based on our model we find underestimations of the 13 C Suess effect at 200 m by 0.24 ‰ in the Indian Ocean, 0.21 ‰ in the North Pacific, 0.26 ‰ in the South Pacific, 0.1 ‰ in the North Atlantic and 0.14 ‰ in the South Atlantic. We attribute the major sources of underestimation to two assumptions in the Eide et al. ( 2017 a ) approach: the spatially uniform preformed component of δ 13 C DIC in year 1940 and the neglect of processes that are not directly linked to the oceanic uptake and transport of chlorofluorocarbon-12 (CFC-12) such as the decrease in δ 13 C POC over the industrial period. The new 13 C module in the ocean biogeochemical component of MPI-ESM shows satisfying performance. It is a useful tool to study the ocean carbon sink under the anthropogenic influences, and it will be applied to investigating variations of ocean carbon cycle in the past. Text North Atlantic Copernicus Publications: E-Journals Eide ENVELOPE(6.250,6.250,62.517,62.517) Indian Pacific Biogeosciences 18 14 4389 4429