Radium-228-derived ocean mixing and trace element inputs in the South Atlantic

Trace elements (TEs) play important roles as micronutrients in modulating marine productivity in the global ocean. The South Atlantic around 40 ∘ S is a prominent region of high productivity and a transition zone between the nitrate-depleted subtropical gyre and the iron-limited Southern Ocean. Howe...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Hsieh, Yu-Te, Geibert, Walter, Woodward, E. Malcolm S., Wyatt, Neil J., Lohan, Maeve C., Achterberg, Eric P., Henderson, Gideon M.
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/bg-18-1645-2021
https://bg.copernicus.org/articles/18/1645/2021/
id ftcopernicus:oai:publications.copernicus.org:bg90294
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Trace elements (TEs) play important roles as micronutrients in modulating marine productivity in the global ocean. The South Atlantic around 40 ∘ S is a prominent region of high productivity and a transition zone between the nitrate-depleted subtropical gyre and the iron-limited Southern Ocean. However, the sources and fluxes of trace elements to this region remain unclear. In this study, the distribution of the naturally occurring radioisotope 228 Ra in the water column of the South Atlantic (Cape Basin and Argentine Basin) has been investigated along a 40 ∘ S zonal transect to estimate ocean mixing and trace element supply to the surface ocean. Ra-228 profiles have been used to determine the horizontal and vertical mixing rates in the near-surface open ocean. In the Argentine Basin, horizontal mixing from the continental shelf to the open ocean shows an eddy diffusion of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>K</mi><mi>x</mi></msub><mo>=</mo><mn mathvariant="normal">1.8</mn><mo>±</mo><mn mathvariant="normal">1.4</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="5b3549c8a00c9456492d0ff0f458c984"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1645-2021-ie00001.svg" width="69pt" height="12pt" src="bg-18-1645-2021-ie00001.png"/></svg:svg> (10 6 cm 2 s −1 ) and an integrated advection velocity <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>w</mi><mo>=</mo><mn mathvariant="normal">0.6</mn><mo>±</mo><mn mathvariant="normal">0.3</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="f6b2d4fc9d40ed1ae0f758ddbbc79007"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1645-2021-ie00002.svg" width="65pt" height="10pt" src="bg-18-1645-2021-ie00002.png"/></svg:svg> cm s −1 . In the Cape Basin, horizontal mixing is <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>K</mi><mi>x</mi></msub><mo>=</mo><mn mathvariant="normal">2.7</mn><mo>±</mo><mn mathvariant="normal">0.8</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="e21a8b9f16f78a2eb0517d91ba672b15"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1645-2021-ie00003.svg" width="69pt" height="12pt" src="bg-18-1645-2021-ie00003.png"/></svg:svg> (10 7 cm 2 s −1 ) and vertical mixing K z = 1.0–1.7 cm 2 s −1 in the upper 600 m layer. Three different approaches ( 228 Ra diffusion, 228 Ra advection, and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">228</mn></msup><mi mathvariant="normal">Ra</mi><mo>/</mo><mi mathvariant="normal">TE</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a2f5eea8f7d173659b78099a3a8047d1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1645-2021-ie00004.svg" width="50pt" height="15pt" src="bg-18-1645-2021-ie00004.png"/></svg:svg> ratio) have been applied to estimate the dissolved trace element fluxes from the shelf to the open ocean. These approaches bracket the possible range of off-shelf fluxes from the Argentine Basin margin to be 4–21 ( ×10 3 ) nmol Co m −2 d −1 , 8–19 ( ×10 4 ) nmol Fe m −2 d −1 and 2.7–6.3 ( ×10 4 ) nmol Zn m −2 d −1 . Off-shelf fluxes from the Cape Basin margin are 4.3–6.2 ( ×10 3 ) nmol Co m −2 d −1 , 1.2–3.1 ( ×10 4 ) nmol Fe m −2 d −1 , and 0.9–1.2 ( ×10 4 ) nmol Zn m −2 d −1 . On average, at 40 ∘ S in the Atlantic, vertical mixing supplies 0.1–1.2 nmol Co m −2 d −1 , 6–9 nmol Fe m −2 d −1 , and 5–7 nmol Zn m −2 d −1 to the euphotic zone. Compared with atmospheric dust and continental shelf inputs, vertical mixing is a more important source for supplying dissolved trace elements to the surface 40 ∘ S Atlantic transect. It is insufficient, however, to provide the trace elements removed by biological uptake, particularly for Fe. Other inputs (e.g. particulate or from winter deep mixing) are required to balance the trace element budgets in this region.
format Text
author Hsieh, Yu-Te
Geibert, Walter
Woodward, E. Malcolm S.
Wyatt, Neil J.
Lohan, Maeve C.
Achterberg, Eric P.
Henderson, Gideon M.
spellingShingle Hsieh, Yu-Te
Geibert, Walter
Woodward, E. Malcolm S.
Wyatt, Neil J.
Lohan, Maeve C.
Achterberg, Eric P.
Henderson, Gideon M.
Radium-228-derived ocean mixing and trace element inputs in the South Atlantic
author_facet Hsieh, Yu-Te
Geibert, Walter
Woodward, E. Malcolm S.
Wyatt, Neil J.
Lohan, Maeve C.
Achterberg, Eric P.
Henderson, Gideon M.
author_sort Hsieh, Yu-Te
title Radium-228-derived ocean mixing and trace element inputs in the South Atlantic
title_short Radium-228-derived ocean mixing and trace element inputs in the South Atlantic
title_full Radium-228-derived ocean mixing and trace element inputs in the South Atlantic
title_fullStr Radium-228-derived ocean mixing and trace element inputs in the South Atlantic
title_full_unstemmed Radium-228-derived ocean mixing and trace element inputs in the South Atlantic
title_sort radium-228-derived ocean mixing and trace element inputs in the south atlantic
publishDate 2021
url https://doi.org/10.5194/bg-18-1645-2021
https://bg.copernicus.org/articles/18/1645/2021/
geographic Argentine
Southern Ocean
geographic_facet Argentine
Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_source eISSN: 1726-4189
op_relation doi:10.5194/bg-18-1645-2021
https://bg.copernicus.org/articles/18/1645/2021/
op_doi https://doi.org/10.5194/bg-18-1645-2021
container_title Biogeosciences
container_volume 18
container_issue 5
container_start_page 1645
op_container_end_page 1671
_version_ 1766207992609374208
spelling ftcopernicus:oai:publications.copernicus.org:bg90294 2023-05-15T18:26:07+02:00 Radium-228-derived ocean mixing and trace element inputs in the South Atlantic Hsieh, Yu-Te Geibert, Walter Woodward, E. Malcolm S. Wyatt, Neil J. Lohan, Maeve C. Achterberg, Eric P. Henderson, Gideon M. 2021-03-15 application/pdf https://doi.org/10.5194/bg-18-1645-2021 https://bg.copernicus.org/articles/18/1645/2021/ eng eng doi:10.5194/bg-18-1645-2021 https://bg.copernicus.org/articles/18/1645/2021/ eISSN: 1726-4189 Text 2021 ftcopernicus https://doi.org/10.5194/bg-18-1645-2021 2021-03-22T17:22:15Z Trace elements (TEs) play important roles as micronutrients in modulating marine productivity in the global ocean. The South Atlantic around 40 ∘ S is a prominent region of high productivity and a transition zone between the nitrate-depleted subtropical gyre and the iron-limited Southern Ocean. However, the sources and fluxes of trace elements to this region remain unclear. In this study, the distribution of the naturally occurring radioisotope 228 Ra in the water column of the South Atlantic (Cape Basin and Argentine Basin) has been investigated along a 40 ∘ S zonal transect to estimate ocean mixing and trace element supply to the surface ocean. Ra-228 profiles have been used to determine the horizontal and vertical mixing rates in the near-surface open ocean. In the Argentine Basin, horizontal mixing from the continental shelf to the open ocean shows an eddy diffusion of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>K</mi><mi>x</mi></msub><mo>=</mo><mn mathvariant="normal">1.8</mn><mo>±</mo><mn mathvariant="normal">1.4</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="5b3549c8a00c9456492d0ff0f458c984"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1645-2021-ie00001.svg" width="69pt" height="12pt" src="bg-18-1645-2021-ie00001.png"/></svg:svg> (10 6 cm 2 s −1 ) and an integrated advection velocity <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>w</mi><mo>=</mo><mn mathvariant="normal">0.6</mn><mo>±</mo><mn mathvariant="normal">0.3</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="f6b2d4fc9d40ed1ae0f758ddbbc79007"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1645-2021-ie00002.svg" width="65pt" height="10pt" src="bg-18-1645-2021-ie00002.png"/></svg:svg> cm s −1 . In the Cape Basin, horizontal mixing is <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>K</mi><mi>x</mi></msub><mo>=</mo><mn mathvariant="normal">2.7</mn><mo>±</mo><mn mathvariant="normal">0.8</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="e21a8b9f16f78a2eb0517d91ba672b15"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1645-2021-ie00003.svg" width="69pt" height="12pt" src="bg-18-1645-2021-ie00003.png"/></svg:svg> (10 7 cm 2 s −1 ) and vertical mixing K z = 1.0–1.7 cm 2 s −1 in the upper 600 m layer. Three different approaches ( 228 Ra diffusion, 228 Ra advection, and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">228</mn></msup><mi mathvariant="normal">Ra</mi><mo>/</mo><mi mathvariant="normal">TE</mi></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a2f5eea8f7d173659b78099a3a8047d1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-1645-2021-ie00004.svg" width="50pt" height="15pt" src="bg-18-1645-2021-ie00004.png"/></svg:svg> ratio) have been applied to estimate the dissolved trace element fluxes from the shelf to the open ocean. These approaches bracket the possible range of off-shelf fluxes from the Argentine Basin margin to be 4–21 ( ×10 3 ) nmol Co m −2 d −1 , 8–19 ( ×10 4 ) nmol Fe m −2 d −1 and 2.7–6.3 ( ×10 4 ) nmol Zn m −2 d −1 . Off-shelf fluxes from the Cape Basin margin are 4.3–6.2 ( ×10 3 ) nmol Co m −2 d −1 , 1.2–3.1 ( ×10 4 ) nmol Fe m −2 d −1 , and 0.9–1.2 ( ×10 4 ) nmol Zn m −2 d −1 . On average, at 40 ∘ S in the Atlantic, vertical mixing supplies 0.1–1.2 nmol Co m −2 d −1 , 6–9 nmol Fe m −2 d −1 , and 5–7 nmol Zn m −2 d −1 to the euphotic zone. Compared with atmospheric dust and continental shelf inputs, vertical mixing is a more important source for supplying dissolved trace elements to the surface 40 ∘ S Atlantic transect. It is insufficient, however, to provide the trace elements removed by biological uptake, particularly for Fe. Other inputs (e.g. particulate or from winter deep mixing) are required to balance the trace element budgets in this region. Text Southern Ocean Copernicus Publications: E-Journals Argentine Southern Ocean Biogeosciences 18 5 1645 1671