Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model

Until recently, the Arctic Basin was generally considered to be a low productivity area and was afforded little attention in global- or even basin-scale ecosystem modelling studies. Due to anthropogenic climate change however, the sea ice cover of the Arctic Ocean is undergoing an unexpectedly fast...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Popova, E. E., Yool, A., Coward, A. C., Aksenov, Y. K., Alderson, S. G., Cuevas, B. A., Anderson, T. R.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/bg-7-3569-2010
https://www.biogeosciences.net/7/3569/2010/
id ftcopernicus:oai:publications.copernicus.org:bg8077
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:bg8077 2023-05-15T14:29:10+02:00 Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model Popova, E. E. Yool, A. Coward, A. C. Aksenov, Y. K. Alderson, S. G. Cuevas, B. A. Anderson, T. R. 2018-09-27 application/pdf https://doi.org/10.5194/bg-7-3569-2010 https://www.biogeosciences.net/7/3569/2010/ eng eng doi:10.5194/bg-7-3569-2010 https://www.biogeosciences.net/7/3569/2010/ eISSN: 1726-4189 Text 2018 ftcopernicus https://doi.org/10.5194/bg-7-3569-2010 2019-12-24T09:57:08Z Until recently, the Arctic Basin was generally considered to be a low productivity area and was afforded little attention in global- or even basin-scale ecosystem modelling studies. Due to anthropogenic climate change however, the sea ice cover of the Arctic Ocean is undergoing an unexpectedly fast retreat, exposing increasingly large areas of the basin to sunlight. As indicated by existing Arctic phenomena such as ice-edge blooms, this decline in sea-ice is liable to encourage pronounced growth of phytoplankton in summer and poses pressing questions concerning the future of Arctic ecosystems. It thus provides a strong impetus to modelling of this region. The Arctic Ocean is an area where plankton productivity is heavily influenced by physical factors. As these factors are strongly responding to climate change, we analyse here the results from simulations of the 1/4° resolution global ocean NEMO (Nucleus for European Modelling of the Ocean) model coupled with the MEDUSA (Model for Ecosystem Dynamics, carbon Utilisation, Sequestration and Acidification) biogeochemical model, with a particular focus on the Arctic basin. Simulated productivity is consistent with the limited observations for the Arctic, with significant production occurring both under the sea-ice and at the thermocline, locations that are difficult to sample in the field. Results also indicate that a substantial fraction of the variability in Arctic primary production can be explained by two key physical factors: (i) the maximum penetration of winter mixing, which determines the amount of nutrients available for summer primary production, and (ii) short-wave radiation at the ocean surface, which controls the magnitude of phytoplankton blooms. A strong empirical correlation was found in the model output between primary production and these two factors, highlighting the importance of physical processes in the Arctic Ocean. Text Arctic Basin Arctic Arctic Ocean Climate change Phytoplankton Sea ice Copernicus Publications: E-Journals Arctic Arctic Ocean Medusa ENVELOPE(157.417,157.417,-79.633,-79.633) Biogeosciences 7 11 3569 3591
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Until recently, the Arctic Basin was generally considered to be a low productivity area and was afforded little attention in global- or even basin-scale ecosystem modelling studies. Due to anthropogenic climate change however, the sea ice cover of the Arctic Ocean is undergoing an unexpectedly fast retreat, exposing increasingly large areas of the basin to sunlight. As indicated by existing Arctic phenomena such as ice-edge blooms, this decline in sea-ice is liable to encourage pronounced growth of phytoplankton in summer and poses pressing questions concerning the future of Arctic ecosystems. It thus provides a strong impetus to modelling of this region. The Arctic Ocean is an area where plankton productivity is heavily influenced by physical factors. As these factors are strongly responding to climate change, we analyse here the results from simulations of the 1/4° resolution global ocean NEMO (Nucleus for European Modelling of the Ocean) model coupled with the MEDUSA (Model for Ecosystem Dynamics, carbon Utilisation, Sequestration and Acidification) biogeochemical model, with a particular focus on the Arctic basin. Simulated productivity is consistent with the limited observations for the Arctic, with significant production occurring both under the sea-ice and at the thermocline, locations that are difficult to sample in the field. Results also indicate that a substantial fraction of the variability in Arctic primary production can be explained by two key physical factors: (i) the maximum penetration of winter mixing, which determines the amount of nutrients available for summer primary production, and (ii) short-wave radiation at the ocean surface, which controls the magnitude of phytoplankton blooms. A strong empirical correlation was found in the model output between primary production and these two factors, highlighting the importance of physical processes in the Arctic Ocean.
format Text
author Popova, E. E.
Yool, A.
Coward, A. C.
Aksenov, Y. K.
Alderson, S. G.
Cuevas, B. A.
Anderson, T. R.
spellingShingle Popova, E. E.
Yool, A.
Coward, A. C.
Aksenov, Y. K.
Alderson, S. G.
Cuevas, B. A.
Anderson, T. R.
Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model
author_facet Popova, E. E.
Yool, A.
Coward, A. C.
Aksenov, Y. K.
Alderson, S. G.
Cuevas, B. A.
Anderson, T. R.
author_sort Popova, E. E.
title Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model
title_short Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model
title_full Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model
title_fullStr Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model
title_full_unstemmed Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model
title_sort control of primary production in the arctic by nutrients and light: insights from a high resolution ocean general circulation model
publishDate 2018
url https://doi.org/10.5194/bg-7-3569-2010
https://www.biogeosciences.net/7/3569/2010/
long_lat ENVELOPE(157.417,157.417,-79.633,-79.633)
geographic Arctic
Arctic Ocean
Medusa
geographic_facet Arctic
Arctic Ocean
Medusa
genre Arctic Basin
Arctic
Arctic Ocean
Climate change
Phytoplankton
Sea ice
genre_facet Arctic Basin
Arctic
Arctic Ocean
Climate change
Phytoplankton
Sea ice
op_source eISSN: 1726-4189
op_relation doi:10.5194/bg-7-3569-2010
https://www.biogeosciences.net/7/3569/2010/
op_doi https://doi.org/10.5194/bg-7-3569-2010
container_title Biogeosciences
container_volume 7
container_issue 11
container_start_page 3569
op_container_end_page 3591
_version_ 1766303243830296576