Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)

The relative abundance of individual archaeal membrane lipids, namely of glycerol dialkyl glycerol tetraethers (GDGTs) with different numbers of cyclopentane rings, varies with temperature, which enables their use as a paleotemperature proxy index. The first GDGT-based index in marine sediments call...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Park, Eunmi, Hefter, Jens, Fischer, Gerhard, Iversen, Morten Hvitfeldt, Ramondenc, Simon, Nöthig, Eva-Maria, Mollenhauer, Gesine
Format: Text
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.5194/bg-16-2247-2019
https://www.biogeosciences.net/16/2247/2019/
id ftcopernicus:oai:publications.copernicus.org:bg74198
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The relative abundance of individual archaeal membrane lipids, namely of glycerol dialkyl glycerol tetraethers (GDGTs) with different numbers of cyclopentane rings, varies with temperature, which enables their use as a paleotemperature proxy index. The first GDGT-based index in marine sediments called TEX 86 is believed to reflect mean annual sea surface temperature (maSST). The <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="506c31356df3d4d1ee627292e6343e00"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00001.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00001.png"/></svg:svg> is an alternative temperature proxy for “low-temperature” regions ( <15 ∘ C), where the original TEX 86 proxy calibration shows a larger scatter. However, <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="c8229702bb877f286ac5dc06585d9567"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00002.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00002.png"/></svg:svg> -derived temperatures still display anomalous estimates in polar regions. In order to elucidate the potential cause of the disagreement between the <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="3033545652db2f76301491c4b4d8ae24"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00003.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00003.png"/></svg:svg> estimate and SST, we analyzed GDGT fluxes and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e4b57ce73663c24ae05588f7afdd61fd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00004.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00004.png"/></svg:svg> -derived temperatures in sinking particles collected with time-series sediment traps in high-northern- and high-southern-latitude regions. At 1296 m depth in the eastern Fram Strait (79 ∘ N), a combination of various transporting mechanisms for GDGTs might result in seasonally different sinking velocities for particles carrying these lipids, resulting in strong variability in the <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e9e27c6fdbebfdec574f03c1bec9f596"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00005.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00005.png"/></svg:svg> signal. The similarity of flux-weighted <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="6a412767e13b5e7c78b7739f62338cc2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00006.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00006.png"/></svg:svg> temperatures from sinking particles and surface sediments implies an export of GDGTs without alteration in the Fram Strait. The estimated temperatures correspond to temperatures in water depths of 30–80 m, where nitrification might occur, indicating the favorable depth habitat of Thaumarchaeota. In the Antarctic Polar Front of the Atlantic sector (50 ∘ S), <math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="fa9316b81ba1ec61e5b75fc334bcfab9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00007.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00007.png"/></svg:svg> -derived temperatures displayed warm and cold biases compared to satellite-derived SSTs at 614 m depth, and its flux-weighted mean signal differs from the deep signal at 3196 m. <math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="a69d239fad4cd272b9fda3456220f7fd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00008.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00008.png"/></svg:svg> -derived temperatures at 3196 m depth and the surface sediment showed up to 7 ∘ C warmer temperatures relative to satellite-derived SST. Such a warm anomaly might be caused by GDGT contributions from Euryarchaeota, which are known to dominate archaeal communities in the circumpolar deep water of the Antarctic Polar Front. The other reason might be that a linear calibration is not appropriate for this frontal region. Of the newly suggested SST proxies based on hydroxylated GDGTs (OH-GDGTs), only those with OH-GDGT–0 and crenarchaeol or the ring index (RI) of OH-GDGTs yield realistic temperature estimates in our study regions, suggesting that OH-GDGTs could be applied as a potential temperature proxy in high-latitude oceans.
format Text
author Park, Eunmi
Hefter, Jens
Fischer, Gerhard
Iversen, Morten Hvitfeldt
Ramondenc, Simon
Nöthig, Eva-Maria
Mollenhauer, Gesine
spellingShingle Park, Eunmi
Hefter, Jens
Fischer, Gerhard
Iversen, Morten Hvitfeldt
Ramondenc, Simon
Nöthig, Eva-Maria
Mollenhauer, Gesine
Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)
author_facet Park, Eunmi
Hefter, Jens
Fischer, Gerhard
Iversen, Morten Hvitfeldt
Ramondenc, Simon
Nöthig, Eva-Maria
Mollenhauer, Gesine
author_sort Park, Eunmi
title Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)
title_short Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)
title_full Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)
title_fullStr Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)
title_full_unstemmed Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)
title_sort seasonality of archaeal lipid flux and gdgt-based thermometry in sinking particles of high-latitude oceans: fram strait (79° n) and antarctic polar front (50° s)
publishDate 2019
url https://doi.org/10.5194/bg-16-2247-2019
https://www.biogeosciences.net/16/2247/2019/
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
Fram Strait
genre_facet Antarc*
Antarctic
Fram Strait
op_source eISSN: 1726-4189
op_relation doi:10.5194/bg-16-2247-2019
https://www.biogeosciences.net/16/2247/2019/
op_doi https://doi.org/10.5194/bg-16-2247-2019
container_title Biogeosciences
container_volume 16
container_issue 11
container_start_page 2247
op_container_end_page 2268
_version_ 1766060876330172416
spelling ftcopernicus:oai:publications.copernicus.org:bg74198 2023-05-15T13:35:06+02:00 Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S) Park, Eunmi Hefter, Jens Fischer, Gerhard Iversen, Morten Hvitfeldt Ramondenc, Simon Nöthig, Eva-Maria Mollenhauer, Gesine 2019-06-04 application/pdf https://doi.org/10.5194/bg-16-2247-2019 https://www.biogeosciences.net/16/2247/2019/ eng eng doi:10.5194/bg-16-2247-2019 https://www.biogeosciences.net/16/2247/2019/ eISSN: 1726-4189 Text 2019 ftcopernicus https://doi.org/10.5194/bg-16-2247-2019 2019-12-24T09:49:07Z The relative abundance of individual archaeal membrane lipids, namely of glycerol dialkyl glycerol tetraethers (GDGTs) with different numbers of cyclopentane rings, varies with temperature, which enables their use as a paleotemperature proxy index. The first GDGT-based index in marine sediments called TEX 86 is believed to reflect mean annual sea surface temperature (maSST). The <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="506c31356df3d4d1ee627292e6343e00"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00001.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00001.png"/></svg:svg> is an alternative temperature proxy for “low-temperature” regions ( <15 ∘ C), where the original TEX 86 proxy calibration shows a larger scatter. However, <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="c8229702bb877f286ac5dc06585d9567"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00002.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00002.png"/></svg:svg> -derived temperatures still display anomalous estimates in polar regions. In order to elucidate the potential cause of the disagreement between the <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="3033545652db2f76301491c4b4d8ae24"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00003.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00003.png"/></svg:svg> estimate and SST, we analyzed GDGT fluxes and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e4b57ce73663c24ae05588f7afdd61fd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00004.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00004.png"/></svg:svg> -derived temperatures in sinking particles collected with time-series sediment traps in high-northern- and high-southern-latitude regions. At 1296 m depth in the eastern Fram Strait (79 ∘ N), a combination of various transporting mechanisms for GDGTs might result in seasonally different sinking velocities for particles carrying these lipids, resulting in strong variability in the <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e9e27c6fdbebfdec574f03c1bec9f596"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00005.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00005.png"/></svg:svg> signal. The similarity of flux-weighted <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="6a412767e13b5e7c78b7739f62338cc2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00006.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00006.png"/></svg:svg> temperatures from sinking particles and surface sediments implies an export of GDGTs without alteration in the Fram Strait. The estimated temperatures correspond to temperatures in water depths of 30–80 m, where nitrification might occur, indicating the favorable depth habitat of Thaumarchaeota. In the Antarctic Polar Front of the Atlantic sector (50 ∘ S), <math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="fa9316b81ba1ec61e5b75fc334bcfab9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00007.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00007.png"/></svg:svg> -derived temperatures displayed warm and cold biases compared to satellite-derived SSTs at 614 m depth, and its flux-weighted mean signal differs from the deep signal at 3196 m. <math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TEX</mi><mn mathvariant="normal">86</mn><mi mathvariant="normal">L</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="a69d239fad4cd272b9fda3456220f7fd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-2247-2019-ie00008.svg" width="32pt" height="17pt" src="bg-16-2247-2019-ie00008.png"/></svg:svg> -derived temperatures at 3196 m depth and the surface sediment showed up to 7 ∘ C warmer temperatures relative to satellite-derived SST. Such a warm anomaly might be caused by GDGT contributions from Euryarchaeota, which are known to dominate archaeal communities in the circumpolar deep water of the Antarctic Polar Front. The other reason might be that a linear calibration is not appropriate for this frontal region. Of the newly suggested SST proxies based on hydroxylated GDGTs (OH-GDGTs), only those with OH-GDGT–0 and crenarchaeol or the ring index (RI) of OH-GDGTs yield realistic temperature estimates in our study regions, suggesting that OH-GDGTs could be applied as a potential temperature proxy in high-latitude oceans. Text Antarc* Antarctic Fram Strait Copernicus Publications: E-Journals Antarctic The Antarctic Biogeosciences 16 11 2247 2268