Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness

The non-uniform spatial integration, an inherent feature of the eddy covariance (EC) method, creates a challenge for flux data interpretation in a heterogeneous environment, where the contribution of different land cover types varies with flow conditions, potentially resulting in biased estimates in...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Tuovinen, Juha-Pekka, Aurela, Mika, Hatakka, Juha, Räsänen, Aleksi, Virtanen, Tarmo, Mikola, Juha, Ivakhov, Viktor, Kondratyev, Vladimir, Laurila, Tuomas
Format: Other/Unknown Material
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.5194/bg-16-255-2019
https://www.biogeosciences.net/16/255/2019/
id ftcopernicus:oai:publications.copernicus.org:bg67618
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The non-uniform spatial integration, an inherent feature of the eddy covariance (EC) method, creates a challenge for flux data interpretation in a heterogeneous environment, where the contribution of different land cover types varies with flow conditions, potentially resulting in biased estimates in comparison to the areally averaged fluxes and land cover attributes. We modelled flux footprints and characterized the spatial scale of our EC measurements in Tiksi, a tundra site in northern Siberia. We used leaf area index (LAI) and land cover class (LCC) data, derived from very-high-spatial-resolution satellite imagery and field surveys, and quantified the sensor location bias. We found that methane ( CH 4 ) fluxes varied strongly with wind direction ( −0.09 to 0.59 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">4</mn></msub><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0d2588859602ea064f5c650e369825fc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-255-2019-ie00001.svg" width="74pt" height="16pt" src="bg-16-255-2019-ie00001.png"/></svg:svg> on average) during summer 2014, reflecting the distribution of different LCCs. Other environmental factors had only a minor effect on short-term flux variations but influenced the seasonal trend. Using footprint weights of grouped LCCs as explanatory variables for the measured CH 4 flux, we developed a multiple regression model to estimate LCC group-specific fluxes. This model showed that wet fen and graminoid tundra patches in locations with topography-enhanced wetness acted as strong sources (1.0 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">4</mn></msub><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a87608ba8cdc5617c2a38afbb7d8e7dc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-255-2019-ie00002.svg" width="74pt" height="16pt" src="bg-16-255-2019-ie00002.png"/></svg:svg> during the peak emission period), while mineral soils were significant sinks ( −0.13 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">4</mn></msub><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="c80672bba024f0475483416465a6f3ef"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-255-2019-ie00003.svg" width="74pt" height="16pt" src="bg-16-255-2019-ie00003.png"/></svg:svg> ). To assess the representativeness of measurements, we upscaled the LCC group-specific fluxes to different spatial scales. Despite the landscape heterogeneity and rather poor representativeness of EC data with respect to the areally averaged LAI and coverage of some LCCs, the mean flux was close to the CH 4 balance upscaled to an area of 6.3 km 2 , with a location bias of 14 %. We recommend that EC site descriptions in a heterogeneous environment should be complemented with footprint-weighted high-resolution data on vegetation and other site characteristics.
format Other/Unknown Material
author Tuovinen, Juha-Pekka
Aurela, Mika
Hatakka, Juha
Räsänen, Aleksi
Virtanen, Tarmo
Mikola, Juha
Ivakhov, Viktor
Kondratyev, Vladimir
Laurila, Tuomas
spellingShingle Tuovinen, Juha-Pekka
Aurela, Mika
Hatakka, Juha
Räsänen, Aleksi
Virtanen, Tarmo
Mikola, Juha
Ivakhov, Viktor
Kondratyev, Vladimir
Laurila, Tuomas
Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness
author_facet Tuovinen, Juha-Pekka
Aurela, Mika
Hatakka, Juha
Räsänen, Aleksi
Virtanen, Tarmo
Mikola, Juha
Ivakhov, Viktor
Kondratyev, Vladimir
Laurila, Tuomas
author_sort Tuovinen, Juha-Pekka
title Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness
title_short Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness
title_full Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness
title_fullStr Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness
title_full_unstemmed Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness
title_sort interpreting eddy covariance data from heterogeneous siberian tundra: land-cover-specific methane fluxes and spatial representativeness
publishDate 2019
url https://doi.org/10.5194/bg-16-255-2019
https://www.biogeosciences.net/16/255/2019/
long_lat ENVELOPE(128.867,128.867,71.633,71.633)
geographic Tiksi
geographic_facet Tiksi
genre Tiksi
Tundra
Siberia
genre_facet Tiksi
Tundra
Siberia
op_source eISSN: 1726-4189
op_relation info:eu-repo/grantAgreement/EC/FP7/282700
doi:10.5194/bg-16-255-2019
https://www.biogeosciences.net/16/255/2019/
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/bg-16-255-2019
container_title Biogeosciences
container_volume 16
container_issue 2
container_start_page 255
op_container_end_page 274
_version_ 1766217416328609792
spelling ftcopernicus:oai:publications.copernicus.org:bg67618 2023-05-15T18:33:05+02:00 Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness Tuovinen, Juha-Pekka Aurela, Mika Hatakka, Juha Räsänen, Aleksi Virtanen, Tarmo Mikola, Juha Ivakhov, Viktor Kondratyev, Vladimir Laurila, Tuomas 2019-01-22 info:eu-repo/semantics/application/pdf https://doi.org/10.5194/bg-16-255-2019 https://www.biogeosciences.net/16/255/2019/ eng eng info:eu-repo/grantAgreement/EC/FP7/282700 doi:10.5194/bg-16-255-2019 https://www.biogeosciences.net/16/255/2019/ info:eu-repo/semantics/openAccess eISSN: 1726-4189 info:eu-repo/semantics/Text 2019 ftcopernicus https://doi.org/10.5194/bg-16-255-2019 2019-12-24T09:49:33Z The non-uniform spatial integration, an inherent feature of the eddy covariance (EC) method, creates a challenge for flux data interpretation in a heterogeneous environment, where the contribution of different land cover types varies with flow conditions, potentially resulting in biased estimates in comparison to the areally averaged fluxes and land cover attributes. We modelled flux footprints and characterized the spatial scale of our EC measurements in Tiksi, a tundra site in northern Siberia. We used leaf area index (LAI) and land cover class (LCC) data, derived from very-high-spatial-resolution satellite imagery and field surveys, and quantified the sensor location bias. We found that methane ( CH 4 ) fluxes varied strongly with wind direction ( −0.09 to 0.59 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">4</mn></msub><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0d2588859602ea064f5c650e369825fc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-255-2019-ie00001.svg" width="74pt" height="16pt" src="bg-16-255-2019-ie00001.png"/></svg:svg> on average) during summer 2014, reflecting the distribution of different LCCs. Other environmental factors had only a minor effect on short-term flux variations but influenced the seasonal trend. Using footprint weights of grouped LCCs as explanatory variables for the measured CH 4 flux, we developed a multiple regression model to estimate LCC group-specific fluxes. This model showed that wet fen and graminoid tundra patches in locations with topography-enhanced wetness acted as strong sources (1.0 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">4</mn></msub><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a87608ba8cdc5617c2a38afbb7d8e7dc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-255-2019-ie00002.svg" width="74pt" height="16pt" src="bg-16-255-2019-ie00002.png"/></svg:svg> during the peak emission period), while mineral soils were significant sinks ( −0.13 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">4</mn></msub><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="c80672bba024f0475483416465a6f3ef"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-255-2019-ie00003.svg" width="74pt" height="16pt" src="bg-16-255-2019-ie00003.png"/></svg:svg> ). To assess the representativeness of measurements, we upscaled the LCC group-specific fluxes to different spatial scales. Despite the landscape heterogeneity and rather poor representativeness of EC data with respect to the areally averaged LAI and coverage of some LCCs, the mean flux was close to the CH 4 balance upscaled to an area of 6.3 km 2 , with a location bias of 14 %. We recommend that EC site descriptions in a heterogeneous environment should be complemented with footprint-weighted high-resolution data on vegetation and other site characteristics. Other/Unknown Material Tiksi Tundra Siberia Copernicus Publications: E-Journals Tiksi ENVELOPE(128.867,128.867,71.633,71.633) Biogeosciences 16 2 255 274