A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging

Antarctic palaeoclimate evolution and vegetation history after the formation of a continent-scale cryosphere at the Eocene–Oligocene boundary, 33.9 million years ago, has remained a matter of controversy. In particular, the reconstruction of terrestrial climate and vegetation has been strongly hampe...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Strother, Stephanie L., Salzmann, Ulrich, Sangiorgi, Francesca, Bijl, Peter K., Pross, Jörg, Escutia, Carlota, Salabarnada, Ariadna, Pound, Matthew J., Voss, Jochen, Woodward, John
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/bg-14-2089-2017
https://www.biogeosciences.net/14/2089/2017/
id ftcopernicus:oai:publications.copernicus.org:bg54732
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:bg54732 2023-05-15T13:43:08+02:00 A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging Strother, Stephanie L. Salzmann, Ulrich Sangiorgi, Francesca Bijl, Peter K. Pross, Jörg Escutia, Carlota Salabarnada, Ariadna Pound, Matthew J. Voss, Jochen Woodward, John 2018-09-27 application/pdf https://doi.org/10.5194/bg-14-2089-2017 https://www.biogeosciences.net/14/2089/2017/ eng eng doi:10.5194/bg-14-2089-2017 https://www.biogeosciences.net/14/2089/2017/ eISSN: 1726-4189 Text 2018 ftcopernicus https://doi.org/10.5194/bg-14-2089-2017 2019-12-24T09:51:30Z Antarctic palaeoclimate evolution and vegetation history after the formation of a continent-scale cryosphere at the Eocene–Oligocene boundary, 33.9 million years ago, has remained a matter of controversy. In particular, the reconstruction of terrestrial climate and vegetation has been strongly hampered by uncertainties in unambiguously identifying non-reworked as opposed to reworked sporomorphs that have been transported into Antarctic marine sedimentary records by waxing and waning ice sheets. Whereas reworked sporomorph grains over longer non-successive geological timescales are easily identifiable within younger sporomorph assemblages (e.g. Permian sporomorphs in Pliocene sediments), distinguishing non-reworked from reworked material in palynological assemblages over successive geological time periods (e.g. Eocene sporomorphs in Oligocene sediments) has remained problematic. This study presents a new quantitative approach to identifying non-reworked pollen assemblages in marine sediment cores from circum-Antarctic waters. We measured the fluorescence colour signature, including red, green, and blue fluorescence; brightness; intensity; and saturation values of selected pollen and spore taxa from Eocene, Oligocene, and Miocene sediments from the Wilkes Land margin Site U1356 (East Antarctica) recovered during Integrated Ocean Drilling Program (IODP) Expedition 318. Our study identified statistically significant differences in red-fluorescence values of non-reworked sporomorph taxa against age. We conclude that red fluorescence is a reliable parameter for identifying the presence of non-reworked pollen and spores in Antarctic marine sediment records from the circum-Antarctic realm that are influenced by glaciation and extensive reworking. Our study provides a new tool to accurately reconstruct Cenozoic terrestrial climate change on Antarctica using fossil pollen and spores. Text Antarc* Antarctic Antarctica East Antarctica Wilkes Land Copernicus Publications: E-Journals Antarctic East Antarctica Wilkes Land ENVELOPE(120.000,120.000,-69.000,-69.000) Biogeosciences 14 8 2089 2100
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Antarctic palaeoclimate evolution and vegetation history after the formation of a continent-scale cryosphere at the Eocene–Oligocene boundary, 33.9 million years ago, has remained a matter of controversy. In particular, the reconstruction of terrestrial climate and vegetation has been strongly hampered by uncertainties in unambiguously identifying non-reworked as opposed to reworked sporomorphs that have been transported into Antarctic marine sedimentary records by waxing and waning ice sheets. Whereas reworked sporomorph grains over longer non-successive geological timescales are easily identifiable within younger sporomorph assemblages (e.g. Permian sporomorphs in Pliocene sediments), distinguishing non-reworked from reworked material in palynological assemblages over successive geological time periods (e.g. Eocene sporomorphs in Oligocene sediments) has remained problematic. This study presents a new quantitative approach to identifying non-reworked pollen assemblages in marine sediment cores from circum-Antarctic waters. We measured the fluorescence colour signature, including red, green, and blue fluorescence; brightness; intensity; and saturation values of selected pollen and spore taxa from Eocene, Oligocene, and Miocene sediments from the Wilkes Land margin Site U1356 (East Antarctica) recovered during Integrated Ocean Drilling Program (IODP) Expedition 318. Our study identified statistically significant differences in red-fluorescence values of non-reworked sporomorph taxa against age. We conclude that red fluorescence is a reliable parameter for identifying the presence of non-reworked pollen and spores in Antarctic marine sediment records from the circum-Antarctic realm that are influenced by glaciation and extensive reworking. Our study provides a new tool to accurately reconstruct Cenozoic terrestrial climate change on Antarctica using fossil pollen and spores.
format Text
author Strother, Stephanie L.
Salzmann, Ulrich
Sangiorgi, Francesca
Bijl, Peter K.
Pross, Jörg
Escutia, Carlota
Salabarnada, Ariadna
Pound, Matthew J.
Voss, Jochen
Woodward, John
spellingShingle Strother, Stephanie L.
Salzmann, Ulrich
Sangiorgi, Francesca
Bijl, Peter K.
Pross, Jörg
Escutia, Carlota
Salabarnada, Ariadna
Pound, Matthew J.
Voss, Jochen
Woodward, John
A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging
author_facet Strother, Stephanie L.
Salzmann, Ulrich
Sangiorgi, Francesca
Bijl, Peter K.
Pross, Jörg
Escutia, Carlota
Salabarnada, Ariadna
Pound, Matthew J.
Voss, Jochen
Woodward, John
author_sort Strother, Stephanie L.
title A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging
title_short A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging
title_full A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging
title_fullStr A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging
title_full_unstemmed A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging
title_sort new quantitative approach to identify reworking in eocene to miocene pollen records from offshore antarctica using red fluorescence and digital imaging
publishDate 2018
url https://doi.org/10.5194/bg-14-2089-2017
https://www.biogeosciences.net/14/2089/2017/
long_lat ENVELOPE(120.000,120.000,-69.000,-69.000)
geographic Antarctic
East Antarctica
Wilkes Land
geographic_facet Antarctic
East Antarctica
Wilkes Land
genre Antarc*
Antarctic
Antarctica
East Antarctica
Wilkes Land
genre_facet Antarc*
Antarctic
Antarctica
East Antarctica
Wilkes Land
op_source eISSN: 1726-4189
op_relation doi:10.5194/bg-14-2089-2017
https://www.biogeosciences.net/14/2089/2017/
op_doi https://doi.org/10.5194/bg-14-2089-2017
container_title Biogeosciences
container_volume 14
container_issue 8
container_start_page 2089
op_container_end_page 2100
_version_ 1766185149190373376