A model of Fe speciation and biogeochemistry at the Tropical Eastern North Atlantic Time-Series Observatory site

A one-dimensional model of Fe speciation and biogeochemistry, coupled with the General Ocean Turbulence Model (GOTM) and a NPZD-type ecosystem model, is applied for the Tropical Eastern North Atlantic Time-Series Observatory (TENATSO) site. Among diverse processes affecting Fe speciation, this study...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Ye, Y., Völker, C., Wolf-Gladrow, D. A.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/bg-6-2041-2009
https://www.biogeosciences.net/6/2041/2009/
id ftcopernicus:oai:publications.copernicus.org:bg380
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:bg380 2023-05-15T17:32:01+02:00 A model of Fe speciation and biogeochemistry at the Tropical Eastern North Atlantic Time-Series Observatory site Ye, Y. Völker, C. Wolf-Gladrow, D. A. 2018-09-27 application/pdf https://doi.org/10.5194/bg-6-2041-2009 https://www.biogeosciences.net/6/2041/2009/ eng eng doi:10.5194/bg-6-2041-2009 https://www.biogeosciences.net/6/2041/2009/ eISSN: 1726-4189 Text 2018 ftcopernicus https://doi.org/10.5194/bg-6-2041-2009 2019-12-24T09:57:42Z A one-dimensional model of Fe speciation and biogeochemistry, coupled with the General Ocean Turbulence Model (GOTM) and a NPZD-type ecosystem model, is applied for the Tropical Eastern North Atlantic Time-Series Observatory (TENATSO) site. Among diverse processes affecting Fe speciation, this study is focusing on investigating the role of dust particles in removing dissolved iron (DFe) by a more complex description of particle aggregation and sinking, and explaining the abundance of organic Fe-binding ligands by modelling their origin and fate. The vertical distribution of different particle classes in the model shows high sensitivity to changing aggregation rates. Using the aggregation rates from the sensitivity study in this work, modelled particle fluxes are close to observations, with dust particles dominating near the surface and aggregates deeper in the water column. POC export at 1000 m is a little higher than regional sediment trap measurements, suggesting further improvement of modelling particle aggregation, sinking or remineralisation. Modelled strong ligands have a high abundance near the surface and decline rapidly below the deep chlorophyll maximum, showing qualitative similarity to observations. Without production of strong ligands, phytoplankton concentration falls to 0 within the first 2 years in the model integration, caused by strong Fe-limitation. A nudging of total weak ligands towards a constant value is required for reproducing the observed nutrient-like profiles, assuming a decay time of 7 years for weak ligands. This indicates that weak ligands have a longer decay time and therefore cannot be modelled adequately in a one-dimensional model. The modelled DFe profile is strongly influenced by particle concentration and vertical distribution, because the most important removal of DFe in deeper waters is colloid formation and aggregation. Redissolution of particulate iron is required to reproduce an observed DFe profile at TENATSO site. Assuming colloidal iron is mainly composed of inorganic colloids, the modelled colloidal to soluble iron ratio is lower that observations, indicating the importance of organic colloids. Text North Atlantic Copernicus Publications: E-Journals Biogeosciences 6 10 2041 2061
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description A one-dimensional model of Fe speciation and biogeochemistry, coupled with the General Ocean Turbulence Model (GOTM) and a NPZD-type ecosystem model, is applied for the Tropical Eastern North Atlantic Time-Series Observatory (TENATSO) site. Among diverse processes affecting Fe speciation, this study is focusing on investigating the role of dust particles in removing dissolved iron (DFe) by a more complex description of particle aggregation and sinking, and explaining the abundance of organic Fe-binding ligands by modelling their origin and fate. The vertical distribution of different particle classes in the model shows high sensitivity to changing aggregation rates. Using the aggregation rates from the sensitivity study in this work, modelled particle fluxes are close to observations, with dust particles dominating near the surface and aggregates deeper in the water column. POC export at 1000 m is a little higher than regional sediment trap measurements, suggesting further improvement of modelling particle aggregation, sinking or remineralisation. Modelled strong ligands have a high abundance near the surface and decline rapidly below the deep chlorophyll maximum, showing qualitative similarity to observations. Without production of strong ligands, phytoplankton concentration falls to 0 within the first 2 years in the model integration, caused by strong Fe-limitation. A nudging of total weak ligands towards a constant value is required for reproducing the observed nutrient-like profiles, assuming a decay time of 7 years for weak ligands. This indicates that weak ligands have a longer decay time and therefore cannot be modelled adequately in a one-dimensional model. The modelled DFe profile is strongly influenced by particle concentration and vertical distribution, because the most important removal of DFe in deeper waters is colloid formation and aggregation. Redissolution of particulate iron is required to reproduce an observed DFe profile at TENATSO site. Assuming colloidal iron is mainly composed of inorganic colloids, the modelled colloidal to soluble iron ratio is lower that observations, indicating the importance of organic colloids.
format Text
author Ye, Y.
Völker, C.
Wolf-Gladrow, D. A.
spellingShingle Ye, Y.
Völker, C.
Wolf-Gladrow, D. A.
A model of Fe speciation and biogeochemistry at the Tropical Eastern North Atlantic Time-Series Observatory site
author_facet Ye, Y.
Völker, C.
Wolf-Gladrow, D. A.
author_sort Ye, Y.
title A model of Fe speciation and biogeochemistry at the Tropical Eastern North Atlantic Time-Series Observatory site
title_short A model of Fe speciation and biogeochemistry at the Tropical Eastern North Atlantic Time-Series Observatory site
title_full A model of Fe speciation and biogeochemistry at the Tropical Eastern North Atlantic Time-Series Observatory site
title_fullStr A model of Fe speciation and biogeochemistry at the Tropical Eastern North Atlantic Time-Series Observatory site
title_full_unstemmed A model of Fe speciation and biogeochemistry at the Tropical Eastern North Atlantic Time-Series Observatory site
title_sort model of fe speciation and biogeochemistry at the tropical eastern north atlantic time-series observatory site
publishDate 2018
url https://doi.org/10.5194/bg-6-2041-2009
https://www.biogeosciences.net/6/2041/2009/
genre North Atlantic
genre_facet North Atlantic
op_source eISSN: 1726-4189
op_relation doi:10.5194/bg-6-2041-2009
https://www.biogeosciences.net/6/2041/2009/
op_doi https://doi.org/10.5194/bg-6-2041-2009
container_title Biogeosciences
container_volume 6
container_issue 10
container_start_page 2041
op_container_end_page 2061
_version_ 1766129927287996416